A Note on the Majority Dynamics in Inhomogeneous Random Graphs

被引:0
|
作者
Yilun Shang
机构
[1] Northumbria University,Department of Computer and Information Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Random graph; majority dynamics; inhomogeneous graph; 05C80; 60C05; 60K35; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
引用
收藏
相关论文
共 50 条
  • [1] A Note on the Majority Dynamics in Inhomogeneous Random Graphs
    Shang, Yilun
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [2] Majority dynamics on sparse random graphs
    Chakraborti, Debsoumya
    Kim, Jeong Han
    Lee, Joonkyung
    Tran, Tuan
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) : 171 - 191
  • [3] Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs
    Benjamini, Itai
    Chan, Siu-On
    O'Donnell, Ryan
    Tamuz, Omer
    Tan, Li-Yang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (09) : 2719 - 2733
  • [4] Resolution of a conjecture on majority dynamics: Rapid stabilization in dense random graphs
    Fountoulakis, Nikolaos
    Kang, Mihyun
    Makai, Tamas
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 1134 - 1156
  • [5] Geometric Random Graphs vs Inhomogeneous Random Graphs
    Napolitano, George M.
    Turova, Tatyana
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (04) : 615 - 637
  • [6] Majority Model on Random Regular Graphs
    Gartner, Bernd
    Zehmakan, Ahad N.
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 572 - 583
  • [7] Geometric inhomogeneous random graphs
    Bringmann, Karl
    Keusch, Ralph
    Lengler, Johannes
    THEORETICAL COMPUTER SCIENCE, 2019, 760 : 35 - 54
  • [8] Susceptibility in inhomogeneous random graphs
    Janson, Svante
    Riordan, Oliver
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [9] Connectivity of Inhomogeneous Random Graphs
    Devroye, Luc
    Fraiman, Nicolas
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (03) : 408 - 420
  • [10] The diameter of inhomogeneous random graphs
    Fraiman, Nicolas
    Mitsche, Dieter
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (02) : 308 - 326