Random graph;
majority dynamics;
inhomogeneous graph;
05C80;
60C05;
60K35;
91D30;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
机构:
Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Chakraborti, Debsoumya
Kim, Jeong Han
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study KIAS, Sch Computat Sci, Seoul, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Kim, Jeong Han
Lee, Joonkyung
论文数: 0引用数: 0
h-index: 0
机构:
Hanyang Univ, Dept Math, Seoul, South Korea
Hanyang Univ, Dept Math, 222 Wangsimni Ro, Seoul, South KoreaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
Lee, Joonkyung
Tran, Tuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R ChinaInst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
机构:
Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Fountoulakis, Nikolaos
Kang, Mihyun
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Discrete Math, Graz, AustriaUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Kang, Mihyun
Makai, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dept Math G Peano, Turin, Italy
Univ New South Wales, Sch Math & Stat, Sydney, NSW, AustraliaUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
机构:
Univ N Carolina, Dept Stat & Operat Res, 337 Hanes Hall, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Stat & Operat Res, 337 Hanes Hall, Chapel Hill, NC 27599 USA
Fraiman, Nicolas
Mitsche, Dieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nice Sophia Antipolis, Lab JA Dieudonne, Nice 02, FranceUniv N Carolina, Dept Stat & Operat Res, 337 Hanes Hall, Chapel Hill, NC 27599 USA