We introduce the N = 2 Lie conformal superalgebras K(p)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak {K}}(p)$\end{document} of Block type, and classify their finite irreducible conformal modules for any nonzero parameter p. In particular, we show that such a conformal module admits a nontrivial extension of a finite conformal module M over K2 if p = − 1 and M has rank (2 + 2), where K2 is an N = 2 conformal subalgebra of K(p)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak {K}}(p)$\end{document}. As a byproduct, we obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal superalgebras k(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\frak k}(n)$\end{document} for n ≥ 1. Composition factors of all the involved reducible conformal modules are also determined.
机构:
Northeast Forestry Univ, Dept Math, Harbin 150040, Heilongjiang, Peoples R ChinaNortheast Forestry Univ, Dept Math, Harbin 150040, Heilongjiang, Peoples R China
Zheng, Keli
Zhang, Yongzheng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R ChinaNortheast Forestry Univ, Dept Math, Harbin 150040, Heilongjiang, Peoples R China