The F-pure threshold of a determinantal ideal

被引:0
作者
Lance Edward Miller
Anurag K. Singh
Matteo Varbaro
机构
[1] University of Arkansas,Department of Mathematical Sciences
[2] University of Utah,Department of Mathematics
[3] Università di Genova,Dipartimento di Matematica
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2014年 / 45卷
关键词
-pure threshold; log canonical threshold; determinantal ideals; Primary: 13A35; Secondary: 13C40, 13A50;
D O I
暂无
中图分类号
学科分类号
摘要
The F-pure threshold is a numerical invariant of prime characteristic singularities, that constitutes an analogue of the log canonical thresholds in characteristic zero. We compute the F-pure thresholds of determinantal ideals, i.e., of ideals generated by the minors of a generic matrix.
引用
收藏
页码:767 / 775
页数:8
相关论文
共 27 条
[1]  
Blickle M.(2008)Discreteness and rationality of Fthresholds MichiganMath. J. 57 43-61
[2]  
Mustaţă M.(2009)F-thresholds of hypersurfaces Trans. Amer. Math. Soc. 361 6549-6565
[3]  
Smith K.E.(2010)Discreteness and rationality of F-jumping numbers on singular varieties Math. Ann. 347 917-949
[4]  
Blickle M.(1991)Algebras defined by powers of determinantal ideals J. Algebra 142 150-163
[5]  
Mustaţă M.(1980)Young diagrams and determinantal varieties Invent. Math. 56 129-165
[6]  
Smith K.E.(2013)Arcs on determinantal varieties Trans. Amer. Math. Soc. 365 2241-2269
[7]  
Blickle M.(2006), with an appendix by P. Monsky Math. Res. Lett. 13 747-760
[8]  
Schwede K.(2003)A generalization of tight closure andmultiplier ideals Trans. Amer. Math. Soc. 355 3143-3174
[9]  
Takagi S.(2014)F-pure thresholds of binomial hypersurfaces Proc. Amer.Math. Soc. 142 2227-2242
[10]  
Zhang W.(1990)Tight closure, invariant theory, and the Briançon-Skoda theorem J. Amer.Math. Soc. 3 31-116