Microstructure and Intermetallic Strengthening in an Equal Channel Angular Pressed AA2219. Part I: Microstructure Characterization

被引:3
作者
Santecchia E. [1 ]
Mengucci P. [1 ]
Cabibbo M. [2 ]
机构
[1] Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU), Università Politecnica delle Marche
[2] Dipartimento di Ingegneria Meccanica e Scienze Matematiche (DIISM), Università Politecnica delle Marche
关键词
Adiabatic heating; ECAP; FEGSEM; Intermetallics; Strengthening mechanisms; TEM;
D O I
10.1007/s13632-014-0134-8
中图分类号
学科分类号
摘要
In the present work, the strengthening effect of the Fe-rich intermetallic phases in a 2219 aluminium alloy subjected to equal channel angular pressing (ECAP) has been studied. Three different deformation conditions, corresponding to the as-extruded, ECAP route A-1 pass and ECAP route A-2 passes were considered. Microstructural characterization has been performed by light microscopy, transmission electron microscopy and scanning electron microscopy observations. All the contributions to the alloy strengthening, including solid solution, dislocation boundary, very fine particle precipitation induced by the adiabatic heating, equilibrium θ = Al2Cu secondary phase particles and the effect of the Fe-rich intermetallics, are discussed in this work. The resulting strengthening was evaluated and modelled in Part II. © 2014 Springer Science+Business Media New York and ASM International.
引用
收藏
页码:194 / 202
页数:8
相关论文
共 47 条
[21]  
Schlesier C., Nembach E., Strengthening of aluminium-lithium alloys by long-range ordered δ′-precipitates, Acta Metall. Mater., 43, 11, pp. 3983-3990, (1995)
[22]  
Sherclif H.R., Ashby M.F., A process model for age hardening of aluminium alloys-I. The model, Acta Metall. Mater., 38, 10, pp. 1789-1802, (1990)
[23]  
Ardell A.J., Precipitation hardening, Met. Trans., 16 A, 12, pp. 2131-2165, (1985)
[24]  
Gomiero P., Brechet Y., Louchet F., Tourabi A., Wack B., Microstructure and mechanical properties of a 2091 AlLi alloy-II. Mechanical properties: yield stress and work hardening, Acta Metall. Mater., 40, 4, pp. 857-861, (1992)
[25]  
Kendig K.L., Miracle D.B., Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater., 50, 16, pp. 4165-4175, (2002)
[26]  
Mondolfo L.F., Manganese in Aluminum Alloys, (1978)
[27]  
Hatch J.E., Aluminum: Properties and Physical Metallurgy, (1984)
[28]  
Albertini G., Bruno G., Dunn B.D., Fiori F., Reimers W., Wright J.S., Comparative neutron and X-ray residual stress measurements on Al-2219 welded plate, Mater. Sci. Eng., A224, pp. 157-165, (1997)
[29]  
Shabestari S.G., The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys, Mater. Sci. Eng. A, 383, pp. 289-298, (2004)
[30]  
Cabibbo M., Evangelista E., Vedani M., Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si Alloy, Metall. Mater. Trans. A, 36, pp. 1353-1364, (2005)