In 2018 and 2019, Raşa presented two proofs for the log-convexity of Fn(x)=∑ν=0n(nνxν(1-x)n-ν)2,n=0,1,2,…,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} F_n(x)=\sum _{\nu =0}^n \Bigl ( {n\atopwithdelims ()\nu } x^{\nu } (1-x)^{n-\nu } \Bigl )^2, \quad n=0,1,2, \ldots , \end{aligned}$$\end{document}on [0, 1]. Here, we offer a third proof of Raşa’s convexity result and we show that Fn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_n$$\end{document} is completely monotonic on [0, 1/2] and absolutely monotonic on [1/2, 1].