Topology of Fold Map Germs from R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document} to R5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^5$$\end{document}

被引:0
作者
J. A. Moya-Pérez
J. J. Nuño-Ballesteros
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Universidade Federal da Paraíba,Departamento de Matemática
关键词
Doodle; topological classification; double point curve; Primary 58K15 Secondary 58K40; 58K65;
D O I
10.1007/s00009-023-02537-5
中图分类号
学科分类号
摘要
Let f:(R3,0)→(R5,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:(\mathbb R^3,0)\rightarrow (\mathbb R^5,0)$$\end{document} be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of f with a small enough sphere Sϵ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^4_\epsilon $$\end{document} centered at the origin in R5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^5$$\end{document}. If f is of fold type, we define a labeled tree associated to its link and prove that is a complete topological invariant for it. As an application we obtain the complete topological classification of map germs contained in the A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}^2$$\end{document}-class (x,y,z2,xz,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,y,z^2,xz,0)$$\end{document}.
引用
收藏
相关论文
共 19 条
[1]  
Benedini Riul P(2022)Singular 3-manifolds in Rev. R. Acad. Cienc.Exactas Fís. Nat. Ser. A Mat. RACSAM 116 Paper No. 56, 18 pp-412
[2]  
Ruas MAS(2019)No inmersed 2-knots with at most one self-intersection point has triple point number two or three Topol. Appl. 264 394-363
[3]  
de Jesus Sacramento A(2007)Real double-points of deformations of Math. Proc. Camb. Philos. Soc. 142 341-1301
[4]  
Kawamura K(2009)-simple map germs from Adv. Math. 221 1281-248
[5]  
Klotz C(1969) to Inst. Hautes Études Sci. Publ. Math. 37 223-239
[6]  
Pop O(2016)The doodle of a finitely determined map germ from Contemp. Math. 675 229-369
[7]  
Rieger JH(1985) to Proc. Lond. Math. Soc. 50 333-977
[8]  
Marar WL(2023)Stability of Proc. R. Soc. Edinb. Sect. A 153 958-331
[9]  
Nuño Ballesteros JJ(2001) mappings. IV. Classification of stable germs by Math. Proc. Camb. Philos. Soc. 130 307-539
[10]  
Mather JN(1981)-algebras Bull. Lond. Math. Soc. 13 481-293