Reflections on tiles (in self-assembly)

被引:0
|
作者
Jacob Hendricks
Matthew J. Patitz
Trent A. Rogers
机构
[1] University of Wisconsin - River Falls,Department of Computer Science and Information Systems
[2] University of Arkansas,Department of Computer Science and Computer Engineering
来源
Natural Computing | 2017年 / 16卷
关键词
Self-assembly; Tile assembly model; Molecular computing;
D O I
暂无
中图分类号
学科分类号
摘要
We define the Reflexive Tile Assembly Model (RTAM), which is obtained from the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across their horizontal and/or vertical axes. We show that the class of directed temperature-1 RTAM systems is not computationally universal, which is conjectured but unproven for the aTAM, and like the aTAM, the RTAM is computationally universal at temperature 2. We then show that at temperature 1, when starting from a single tile seed, the RTAM is capable of assembling n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} squares for n odd using only n tile types, but incapable of assembling n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} squares for n even. Moreover, we show that n is a lower bound on the number of tile types needed to assemble n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} squares for n odd in the temperature-1 RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n-1$$\end{document}. Finally, we give preliminary results toward the classification of which finite connected shapes in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} can be assembled (strictly or weakly) by a singly seeded (i.e. seed of size 1) RTAM system, including a complete classification of which finite connected shapes can be strictly assembled by mismatch-free singly seeded RTAM systems.
引用
收藏
页码:295 / 316
页数:21
相关论文
共 50 条
  • [1] Reflections on tiles (in self-assembly)
    Hendricks, Jacob
    Patitz, Matthew J.
    Rogers, Trent A.
    NATURAL COMPUTING, 2017, 16 (02) : 295 - 316
  • [2] Self-assembly with Geometric Tiles
    Fu, Bin
    Patitz, Matthew J.
    Schweller, Robert T.
    Sheline, Robert
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 714 - 725
  • [3] Programming Self-Assembly of DNA Tiles
    Bellia, Marco
    Occhiuto, M. Eugenia
    FUNDAMENTA INFORMATICAE, 2016, 143 (1-2) : 35 - 49
  • [4] Evolving tiles for automated self-assembly design
    Terrazas, German
    Gheorghe, Marian
    Kendall, Graham
    Krasnogor, Natalio
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2001 - +
  • [5] Directed Self-Assembly of DNA Tiles into Complex Nanocages
    Tian, Cheng
    Li, Xiang
    Liu, Zhiyu
    Jiang, Wen
    Wang, Guansong
    Mao, Chengde
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (31) : 8041 - 8044
  • [6] Counting by DNA Self-Assembly in the Presence of Rotated Tiles
    Hashempour, Masoud
    Arani, Zahra Mashreghian
    Lombardi, Fabrizio
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (03) : 632 - 638
  • [7] Self-assembly of 3D magnetic tiles
    Rabl, Jessica
    Digital Fabrication 2006, Final Program and Proceedings, 2006, : 187 - 187
  • [8] Hierarchical self-assembly of fractals with signal-passing tiles
    Jacob Hendricks
    Meagan Olsen
    Matthew J. Patitz
    Trent A. Rogers
    Hadley Thomas
    Natural Computing, 2018, 17 : 47 - 65
  • [9] Geometric tiles and powers and limitations of geometric hindrance in self-assembly
    Hader, Daniel
    Patitz, Matthew J.
    NATURAL COMPUTING, 2021, 20 (02) : 243 - 258
  • [10] Geometric tiles and powers and limitations of geometric hindrance in self-assembly
    Daniel Hader
    Matthew J. Patitz
    Natural Computing, 2021, 20 : 243 - 258