On unitary representability of topological groups

被引:0
作者
Jorge Galindo
机构
[1] Universidad Jaume I,Departmento de Matemáticas
来源
Mathematische Zeitschrift | 2009年 / 263卷
关键词
Unitary group; Positive definite; -Banach space; Free Abelian topological group; Free locally convex space; Free Banach space; Unitarily representable; Uniform embedding; Schwartz space; 43A35; 46B99; 22A10; 54H11; 54E35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the additive group (E*, τk(E)) of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}_\infty}$$\end{document} -Banach space E, with the topology τk(E) of uniform convergence on compact subsets of E, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is unitarily representable). This is the same as proving that the topological group (E*, τk(E)) is uniformly homeomorphic to a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell_2^\kappa}$$\end{document} for some κ. As an immediate consequence, preduals of commutative von Neumann algebras or duals of commutative C*-algebras are unitarily representable in the topology of uniform convergence on compact subsets. The unitary representability of free locally convex spaces (and thus of free Abelian topological groups) on compact spaces, follows as well. The above facts cannot be extended to noncommutative von Neumann algebras or general Schwartz spaces.
引用
收藏
相关论文
共 50 条
[31]   Completeness of hyperspaces on topological groups [J].
Romaguera, S ;
Sanchis, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 149 (03) :287-293
[32]   The topology of free topological groups [J].
Sipacheva O.V. .
Journal of Mathematical Sciences, 2005, 131 (4) :5765-5838
[33]   On subgroups of minimal topological groups [J].
Uspenskij, Vladimir V. .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (14) :1580-1606
[34]   Elementary equivalence of unitary linear groups over rings [J].
Balmasov E.S. ;
Bunina E.I. .
Journal of Mathematical Sciences, 2009, 162 (5) :594-604
[35]   STABILIZATION OF UNITARY GROUPS OVER POLYNOMIAL-RINGS [J].
HONG, Y .
CHINESE ANNALS OF MATHEMATICS SERIES B, 1995, 16 (02) :177-190
[36]   Normalizers of Sylow Subgroups in Finite Linear and Unitary Groups [J].
Vasil'ev, A. V. .
ALGEBRA AND LOGIC, 2020, 59 (01) :1-17
[37]   Hardy type spaces associated with compact unitary groups [J].
Lopushansky, Oleh ;
Zagorodnyuk, Andriy .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) :556-572
[38]   Normalizers of Sylow Subgroups in Finite Linear and Unitary Groups [J].
A. V. Vasil’ev .
Algebra and Logic, 2020, 59 :1-17
[39]   On metaplectic representations of unitary groups: I. Splitting [J].
Murase, A .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (04) :59-62
[40]   A regularized Siegel-Weil formula for unitary groups [J].
Atsushi Ichino .
Mathematische Zeitschrift, 2004, 247 :241-277