On symmetric configurations in some problems on extremal decomposition. II

被引:0
作者
G. V. Kuz’mina
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute,
关键词
Russia; Classical Problem; Extremal Problem; Mathematical Institute; Steklov Mathematical Institute;
D O I
10.1007/s10958-009-9341-2
中图分类号
学科分类号
摘要
Some problems on extremal decomposition in families of nonoverlapping domains containing systems of biangles with free vertices on a circle are considered. Simultaneously, some progress in solving the classical problem on the maximum of a well-known conformal invariant is achieved. This exhibits the role of symmetric configurations in extremal problems under consideration. Bibliography: 11 titles.
引用
收藏
页码:632 / 645
页数:13
相关论文
共 13 条
[1]  
Kuz’mina G. V.(1997)Methods in geometric function theory. I, II Algebra Analiz 9 41-103
[2]  
Dubinin V. N.(1994)Symmetrization in the geometric theory of functions of a complex variable Usp. Mat. Nauk 49 3-76
[3]  
Dubinin V. N.(2008)On extremal decomposition problems Zap. Nauchn. Semin. POMI 357 54-74
[4]  
Kirillova D. A.(2007)On symmetric configurations in some problems on extremal decomposition Zap. Nauchn. Semin. POMI 350 160-172
[5]  
Kuz’mina G. V.(1985)Some properties of modules of families of curves Zap. Nauchn. Semin. POMI 144 72-82
[6]  
Emel’yanov E. G.(1987)A connection between two problems on extremal decomposition Zap. Nanchn. Semin. POMI 160 91-98
[7]  
Emel’anov E. G.(1988)Separating transformation of domains and problems on extremal decompositi0n Zap. Nauchn. Semin. POMI 168 48-66
[8]  
Dubinin V. N.(1990)On the question of extremal decomposition of the Riemann sphere Zap. Nauchn. Semin. POMI 185 72-95
[9]  
Kuz’mina G. V.(1997)Theorems on extremal decomposition in families of systems of domains of various types Zap. Nauchn. Semin. POMI 237 74-104
[10]  
Emel’yanov E. G.(1999)Modules and extremal metric pr0blems Algebra Analiz 11 3-86