Duality of Orthogonal Polynomials on a Finite Set

被引:0
作者
Alexei Borodin
机构
[1] Institute for Advanced Study,School of Mathematics
来源
Journal of Statistical Physics | 2002年 / 109卷
关键词
Discrete orthogonal polynomials; orthogonal polynomial ensembles;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a certain duality relation for orthogonal polynomials defined on a finite set. The result is used in a direct proof of the equivalence of two different ways (using particles or holes) of computing the correlation functions of a discrete orthogonal polynomial ensemble.
引用
收藏
页码:1109 / 1120
页数:11
相关论文
共 17 条
[1]  
Dyson F. J.(1962)Statistical theory of the energy levels of complex systems I, II, III J. Math. Phys. 3 140-156
[2]  
Gaudin M.(1961)Sur la loi limite de l'espacement de valuers propres d'une matrics aleatiore Nucl. Phys. 25 447-458
[3]  
Gaudin M.(1960)On the density of eigenvalues of a random matrix Nucl. Phys. 18 420-427
[4]  
Mehta M. L.(1991)Correlation functions of random matrix ensembles related to classical orthogonal polynomials J. Phys. Soc. Japan 60 3298-3322
[5]  
Nagao T.(2000)Distributions on partitions, point processes, and the hypergeometric kernel Commun. Math. Phys. 211 335-358
[6]  
Wadati M.(2000)Shape fluctuations and random matrices Commun. Math. Phys. 209 437-476
[7]  
Borodin A.(2001)Discrete orthogonal polynomial ensembles and the Plancherel measure Ann. Math. 153 259-296
[8]  
Olshanski G.(1986)Finite sequences of orthogonal polynomials connected by a Jacobi matrix Linear Algebra Appl. 75 43-55
[9]  
Johansson K.(1975)The coincidence approach to stochastic point processes Adv. Appl. Prob. 7 83-122
[10]  
Johansson K.(2000)Asymptotics of Plancherel measures for symmetric groups J. Amer. Math. Soc. 13 481-515