Pre-wavelet bases in Lebesgue spaces

被引:0
作者
Chiou-Yueh Gun
Kai-Cheng Wang
Chi-I Yang
Kuei-Fang Chang
机构
[1] Nan-Kai University of Technology,Department of Mechanical Engineering
[2] Feng-Chia University,Ph.D. Program in Mechanical and Aeronautical Engineering
[3] Feng-Chia University,Department of Applied Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
bijectivity; Calderón-Zygmund decomposition theorem; frame; Riesz basis; semi-orthogoal; unconditional basis; wavelet; Wiener’s lemma; 42C40; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
Under the decay condition, we have constructed the dual wavelet basis of a pre-wavelet basis. The frame operators of both bases are bijective on Lebesgue spaces. Both bases are also unconditional bases for Lebesgue spaces.
引用
收藏
相关论文
共 47 条
[1]  
Wiener N(1932)Tauberian theorems Ann. Math. (2) 33 1-100
[2]  
Cohen A(1992)Biorthogonal bases of compactly supported wavelets Commun. Pure Appl. Math. 45 485-560
[3]  
Daubechies I(2007)The canonical and alternate duals of a wavelet frame Appl. Comput. Harmon. Anal. 23 263-272
[4]  
Feauveau JC(1993)Inequalities of Littlewood-Paley type for frames and wavelets SIAM J. Math. Anal. 24 263-277
[5]  
Bownik M(2002)The canonical dual frame of a wavelet frame Appl. Comput. Harmon. Anal. 12 269-285
[6]  
Lemvig J(1993)Wavelet bases in Stud. Math. 106 175-187
[7]  
Chui CK(1999)Wavelets as unconditional bases in J. Fourier Anal. Appl. 5 73-85
[8]  
Shi XL(2003)Affine frames, GMRA’s, and the canonical dual Stud. Math. 159 453-479
[9]  
Daubechies I(2009)Constructing pairs of dual bandlimited framelets with desired time localization Adv. Comput. Math. 30 231-247
[10]  
Han B(2000)Orthonormal wavelets and tight frames with arbitrary real dilations Appl. Comput. Harmon. Anal. 9 243-264