A fully invariant ideal of alternative algebras

被引:0
作者
Filippov V.T.
机构
关键词
Associative Algebra; Free Generator; Natural Homomorphism; Nilpotent Ideal; Alternative Algebra;
D O I
10.1007/BF02671617
中图分类号
学科分类号
摘要
Lei φ be an associative commutative ring with I, containing 1/6, and A be an alternative φalgebra. Let D be an associator ideal of A and H a fully invariant ideal of A, generated by all elements oftheformh(y,z,t,x,x) = [{[y,z],t,x}-, x] + [{[y,x},z,x}-,t], where [x,y] = xy-yx, {x,y, z}- = [[z, y],z] - [[i,z],y] + 2[z,[y, z]]. Here we consider an ideal Q = H ∩ D and prove that Q4 = 0 in the algebra A. If A is unmixed, then HD = 0, DE = 0, and Q2 = 0 in particular. If A is a finitely generated unmixed algebra, then the ideal H lies in its associative center and Q = 0. It follows that any finitely generated purely alternative algebra satisfies the identity h(y,z,t,x,x) = 0. We also show that a fully invariant ideal HO of the unmixed algebra A, generated by all elements of the form h(x,z,t,x,x), lies in its associative center and H0∩D =0. Consequently, every purely alternative algebra satisfies the identity h(x,z,t,x,x) = 0. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 13 条
  • [1] Shestakov I.P., Superalgebras and counterexamples, Sib. Mat. Zh., 32, 6, pp. 187-196, (1991)
  • [2] Filippov V.T., Trivial nuclear ideals of alternative algebras, Algebra Logika, 36, 1, pp. 97-115, (1997)
  • [3] Filippov V.T., Nilpotent ideals in Mal'tsev algebras, Algebra Logika, 18, 5, pp. 599-613, (1979)
  • [4] Filippov V.T., The variety of Mal'tsev algebras, Algebra Logika, 20, 3, pp. 300-314, (1981)
  • [5] Zhevlakov K.A., Slin'Ko A.M., Shestakov I.P., Shirshov A.I., Rings That Are Nearly Associative [in Russian], (1978)
  • [6] Filippov V.T., Decomposition of a variety of alternative algebras into a subvariety product, Algebra Logika, 32, 1, pp. 73-91, (1993)
  • [7] Filippov V.T., Annihilators of Mal'tsev algebras, Algebra Logika, 33, 5, pp. 576-595, (1994)
  • [8] Filippov V.T., A T-ideal of Mal'tsev algebras, Sib. Mat. Zh., 29, 3, pp. 148-155, (1988)
  • [9] Filippov V.T., The measure of non-Lieness for Mal'tsev algebras, Algebra Logika, 31, 2, pp. 198-217, (1992)
  • [10] Filippov V.T., Varieties of Mal'tsev and alternative algebras generated by algebras of finite ranks, Groups and Other Algebraic Systems with Finiteness Conditions [in Russian], pp. 139-156, (1984)