The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left( {L^{p} ,\dot{F}^{{\beta ,\infty }}_{p} } \right)} $$\end{document}–Boundedness of Commutators of Multipliers

被引:0
作者
Pu Zhang
Jie Cheng Chen
机构
[1] Zhejiang University of Sciences,Institute of Mathematics
[2] Zhejiang University,Department of Mathematics
关键词
Multiplier; Commutator; Lipschitz space; Triebel–Lizorkin space; 42B15; 42B35;
D O I
10.1007/s10114-004-0457-5
中图分类号
学科分类号
摘要
In this paper, we study the commutator generalized by a multiplier and a Lipschitz function. Under some assumptions, we establish the boundedness properties of it from Lp(ℝn) into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\dot{F}^{{\beta ,\infty }}_{p} } $$\end{document} (ℝn), the Triebel–Lizorkin spaces.
引用
收藏
页码:765 / 772
页数:7
相关论文
共 9 条
  • [1] Coifman undefined(1976)undefined Ann. of Math. 103 611-undefined
  • [2] Janson undefined(1978)undefined Ark. Math. 16 263-undefined
  • [3] Coifman undefined(1993)undefined J. Math. Pure Appl. 72 247-undefined
  • [4] Paluszyński undefined(1995)undefined Indiana Univ. Math. J. 44 1-undefined
  • [5] Lu undefined(2002)undefined Science in China 45 984-undefined
  • [6] Lu undefined(2003)undefined Acta Math. Sinica, English Series 19 51-undefined
  • [7] Lu undefined(2003)undefined Math. Nachr. 252 70-undefined
  • [8] Kurtz undefined(1979)undefined Trans. Amer. Math. Soc. 255 343-undefined
  • [9] You undefined(1988)undefined Adv. in Math. 17 79-undefined