Search for a charged Higgs boson in pp collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=8 $$\end{document} TeV

被引:0
作者
V. Khachatryan
A. M. Sirunyan
A. Tumasyan
W. Adam
E. Asilar
T. Bergauer
J. Brandstetter
E. Brondolin
M. Dragicevic
J. Erö
M. Flechl
M. Friedl
R. Frühwirth
V. M. Ghete
C. Hartl
N. Hörmann
J. Hrubec
M. Jeitler
V. Knünz
A. König
M. Krammer
I. Krätschmer
D. Liko
T. Matsushita
I. Mikulec
D. Rabady
B. Rahbaran
H. Rohringer
J. Schieck
R. Schöfbeck
J. Strauss
W. Treberer-Treberspurg
W. Waltenberger
C.-E. Wulz
V. Mossolov
N. Shumeiko
J. Suarez Gonzalez
S. Alderweireldt
T. Cornelis
E. A. De Wolf
X. Janssen
A. Knutsson
J. Lauwers
S. Luyckx
R. Rougny
M. Van De Klundert
H. Van Haevermaet
P. Van Mechelen
N. Van Remortel
A. Van Spilbeeck
机构
[1] Yerevan Physics Institute,State Key Laboratory of Nuclear Physics and Technology
[2] Institut für Hochenergiephysik der OeAW,Department of Physics
[3] National Centre for Particle and High Energy Physics,National Centre for Particle Physics
[4] Universiteit Antwerpen,National Centre for Physics
[5] Vrije Universiteit Brussel,Institute of Experimental Physics, Faculty of Physics
[6] Université Libre de Bruxelles,Skobeltsyn Institute of Nuclear Physics
[7] Ghent University,Institute for Particle Physics
[8] Université Catholique de Louvain,National Scientific Center
[9] Université de Mons,Rutgers
[10] Centro Brasileiro de Pesquisas Fisicas,Plasma Physics Research Center, Science and Research Branch
[11] Universidade do Estado do Rio de Janeiro,Faculty of Physics
[12] Universidade Estadual Paulista,Facoltà Ingegneria
[13] Universidade Federal do ABC,School of Physics and Astronomy
[14] Institute for Nuclear Research and Nuclear Energy,undefined
[15] University of Sofia,undefined
[16] Institute of High Energy Physics,undefined
[17] Peking University,undefined
[18] Universidad de Los Andes,undefined
[19] University of Split,undefined
[20] Faculty of Electrical Engineering,undefined
[21] Mechanical Engineering and Naval Architecture,undefined
[22] University of Split,undefined
[23] Faculty of Science,undefined
[24] Institute Rudjer Boskovic,undefined
[25] University of Cyprus,undefined
[26] Charles University,undefined
[27] Academy of Scientific Research and Technology of the Arab Republic of Egypt,undefined
[28] Egyptian Network of High Energy Physics,undefined
[29] National Institute of Chemical Physics and Biophysics,undefined
[30] University of Helsinki,undefined
[31] Helsinki Institute of Physics,undefined
[32] Lappeenranta University of Technology,undefined
[33] DSM/IRFU,undefined
[34] CEA/Saclay,undefined
[35] Laboratoire Leprince-Ringuet,undefined
[36] Ecole Polytechnique,undefined
[37] IN2P3-CNRS,undefined
[38] Institut Pluridisciplinaire Hubert Curien,undefined
[39] Université de Strasbourg,undefined
[40] Université de Haute Alsace Mulhouse,undefined
[41] CNRS/IN2P3,undefined
[42] Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,undefined
[43] CNRS/IN2P3,undefined
[44] Université de Lyon,undefined
[45] Université Claude Bernard Lyon 1,undefined
[46] CNRS-IN2P3,undefined
[47] Institut de Physique Nucléaire de Lyon,undefined
[48] Georgian Technical University,undefined
[49] Tbilisi State University,undefined
[50] RWTH Aachen University,undefined
关键词
Hadron-Hadron Scattering; Higgs physics; Supersymmetry;
D O I
10.1007/JHEP11(2015)018
中图分类号
学科分类号
摘要
A search for a charged Higgs boson is performed with a data sample corresponding to an integrated luminosity of 19.7 ± 0.5 fb−1 collected with the CMS detector in proton-proton collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=8 $$\end{document},TeV. The charged Higgs boson is searched for in top quark decays for mH± < mt − mb, and in the direct production pp → t(b)H± for mH± > mt − mb. The H± → τ±ντ and H± → tb decay modes in the final states τh+jets, μτh, ℓ+jets, and ℓℓ’ (ℓ =e, μ) are considered in the search. No signal is observed and 95% confidence level upper limits are set on the charged Higgs boson production. A model-independent upper limit on the product branching fraction ℬt→H±bℬH±→τ±ντ=1.2−0.15%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{B}}\left(\mathrm{t}\to {\mathrm{H}}^{\pm}\mathrm{b}\right)\mathrm{\mathcal{B}}\left({\mathrm{H}}^{\pm}\to {\tau}^{\pm }{\nu}_{\tau}\right)=1.2-0.15\% $$\end{document} is obtained in the mass range mH± = 80–160 GeV, while the upper limit on the cross section times branching fraction σpp→tbH±ℬH±→τ±ντ=0.38−0.025\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma \left(\mathrm{pp}\to \mathrm{t}\left(\mathrm{b}\right){\mathrm{H}}^{\pm}\right)\mathrm{\mathcal{B}}\left({\mathrm{H}}^{\pm}\to\ {\tau}^{\pm }{\nu}_{\tau}\right)=0.38-0.025 $$\end{document} pb is set in the mass range mH+ = 180–600 GeV. Here, σ(pp → t(b)H±) stands for the cross section sum σpp→t¯bH++σpp→tb¯H−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma \left(\mathrm{pp}\to \overline{\mathrm{t}}\left(\mathrm{b}\right){\mathrm{H}}^{+}\right)+\sigma \left(\mathrm{pp}\to \mathrm{t}\left(\overline{\mathrm{b}}\right){\mathrm{H}}^{-}\right) $$\end{document}. Assuming ℬH±→tb=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{B}}\left({\mathrm{H}}^{\pm}\to \mathrm{t}\mathrm{b}\right)=1 $$\end{document}, an upper limit on σ(pp → t(b)H±) of 2.0–0.13 pb is set for mH± = 180–600 GeV. The combination of all considered decay modes and final states is used to set exclusion limits in the mH±−tan β parameter space in different MSSM benchmark scenarios. [graphic not available: see fulltext]
引用
收藏
相关论文
共 93 条
  • [1] Lee TD(1973)A theory of spontaneous T violation Phys. Rev. D 8 1226-undefined
  • [2] Fayet P(1975)Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino Nucl. Phys. B 90 104-undefined
  • [3] Fayet P(1976)Supersymmetry and weak, electromagnetic and strong interactions Phys. Lett. B 64 159-undefined
  • [4] Fayet P(1977)Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions Phys. Lett. B 69 489-undefined
  • [5] Dimopoulos S(1981)Softly broken supersymmetry and SU(5) Nucl. Phys. B 193 150-undefined
  • [6] Georgi H(1981)Naturalness in supersymmetric guts Z. Phys. C 11 153-undefined
  • [7] Sakai N(1982)Low-energy parameters and particle masses in a supersymmetric grand unified model Prog. Theor. Phys. 67 1889-undefined
  • [8] Inoue K(1984)Renormalization of supersymmetry breaking parameters revisited Prog. Theor. Phys. 71 413-undefined
  • [9] Kakuto A(2015)Improved cross-section predictions for heavy charged Higgs boson production at the LHC Phys. Rev. D 91 075015-undefined
  • [10] Komatsu H(2011)Charged-Higgs-boson production at the LHC: NLO supersymmetric QCD corrections Phys. Rev. D 83 055005-undefined