Eigenvalues of the nonlinear Schrödinger equation

被引:0
|
作者
S. Geltman
机构
[1] Department of Physics University of Colorado,
来源
The European Physical Journal D | 2012年 / 66卷
关键词
Cold Matter and Quantum Gas;
D O I
暂无
中图分类号
学科分类号
摘要
Properties of the nonlinear Schrödinger equation, a form that often arises in many-body problems, are investigated. The eigenvalues for a diffuse boson gas confined in a sphere are evaluated. The important differences from the linear case, such as the nonorthogonality of the eigenfunctions and their dramatically different variational properties are examined.
引用
收藏
相关论文
共 50 条
  • [1] Asymptotic behaviors for the eigenvalues of the Schrödinger equation
    Saidani, Siwar
    Jawahdou, Adel
    APPLICABLE ANALYSIS, 2024, 103 (16) : 2909 - 2922
  • [2] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [3] Management of the discrete eigenvalues of the nonlinear Schrödinger equation using periodic dispersion perturbation
    Konyukhov, Andrey
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [4] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [5] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [6] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [7] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [8] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [9] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [10] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138