Structural Constraints and Mutational Bias in the Evolutionary Restoration of a Severe Deletion in RNA Phage MS2

被引:0
|
作者
Normunds Licis
Jan van Duin
机构
[1] University of Latvia,Biomedical Research and Study Centre
[2] Leiden University,Leiden Institute of Chemistry
来源
Journal of Molecular Evolution | 2006年 / 63卷
关键词
RNA phage; RNA virus; RNA structure; Translational control; Quasi-species;
D O I
暂无
中图分类号
学科分类号
摘要
A 4-nucleotide (nt) deletion was made in the 36-nt-long intercistronic region separating the coat and replicase genes of the single-stranded RNA phage MS2. This region is the focus of several RNA structures conferring high fitness. One such element is the operator hairpin, which, in the course of infection, will bind a coat-protein dimer, thereby precluding further replicase synthesis and initiating encapsidation. Another structure is a long-distance base pairing (MJ) controlling replicase expression. The 4-nt deletion does not directly affect the operator hairpin but it disrupts the MJ pairing. Its main effect, however, is a frame shift in the overlapping lysis gene. This gene starts in the upstream coat gene, runs through the 36-nt-long intercistronic region, and ends in the downstream replicase cistron. Here we report and interpret the spectrum of solutions that emerges when the crippled phage is evolved. Four different solutions were obtained by sequencing 40 plaques. Three had cured the frame shift in the lysis gene by inserting one nt in the loop of the operator hairpin causing its inactivation. Yet these low-fitness revertants could further improve themselves when evolved. The inactivated operator was replaced by a substitute and thereafter these revertants found several ways to restore control over the replicase gene. To allow for the evolutionary enrichment of low-probability but high-fitness revertants, we passaged lysate samples before plating. Revertants obtained in this way also restored the frame shift, but not at the expense of the operator. By taking larger and larger lysates samples for such bulk evolution, ever higher-fitness and lower-frequency revertants surfaced. Only one made it back to wild type. As a rule, however, revertants moved further and further away from the wild-type sequence because restorative mutations are, in the majority of cases, selected for their capacity to improve the phenotype by optimizing one of several potential alternative RNA foldings that emerge as a result of the initial deletion. This illustrates the role of structural constraints which limit the path of subsequent restorative mutations.
引用
收藏
页码:314 / 329
页数:15
相关论文
共 6 条