Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

被引:0
|
作者
Haroon Badshah
Tahir Ali
Myeong Ok Kim
机构
[1] College of Natural Sciences (RINS),Division of Applied Life Science (BK 21)
[2] Gyeongsang National University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD.
引用
收藏
相关论文
共 50 条
  • [1] Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway
    Badshah, Haroon
    Ali, Tahir
    Kim, Myeong Ok
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Hesperetin, a Citrus Flavonoid, Attenuates LPS-Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-κB Signaling
    Muhammad, Tahir
    Ikram, Muhammad
    Ullah, Rahat
    Rehman, Shafiq Ur
    Kim, Myeong Ok
    NUTRIENTS, 2019, 11 (03)
  • [3] Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway
    Cheng Ju
    Yue Wang
    Caixia Zang
    Hui Liu
    Fangyu Yuan
    Jingwen Ning
    Meiyu Shang
    Jingwei Ma
    Gen Li
    Yang Yang
    Xiuqi Bao
    Dan Zhang
    Inflammation, 2022, 45 : 2375 - 2387
  • [4] Inhibition of Dyrk1A Attenuates LPS-Induced Neuroinflammation via the TLR4/NF-κB P65 Signaling Pathway
    Ju, Cheng
    Wang, Yue
    Zang, Caixia
    Liu, Hui
    Yuan, Fangyu
    Ning, Jingwen
    Shang, Meiyu
    Ma, Jingwei
    Li, Gen
    Yang, Yang
    Bao, Xiuqi
    Zhang, Dan
    INFLAMMATION, 2022, 45 (06) : 2375 - 2387
  • [5] Obovatol attenuates LPS-induced memory impairments in mice via inhibition of NF-κB signaling pathway
    Choi, Dong-Young
    Lee, Jae Woong
    Lin, Guihua
    Lee, Yong Kyung
    Lee, Yeon Hee
    Choi, Im Seop
    Han, Sang Bae
    Jung, Jae Kyung
    Kim, Young Hee
    Kim, Ki Ho
    Oh, Ki-Wan
    Hong, Jin Tae
    Lee, Moon Soon
    NEUROCHEMISTRY INTERNATIONAL, 2012, 60 (01) : 68 - 77
  • [6] Physcion Mitigates LPS-Induced Neuroinflammation, Oxidative Stress, and Memory Impairments via TLR-4/NF-кB Signaling in Adult Mice
    Ahmad, Sareer
    Choe, Kyonghwan
    Badshah, Haroon
    Ahmad, Riaz
    Ali, Waqar
    Rehman, Inayat Ur
    Park, Tae Ju
    Park, Jun Sung
    Kim, Myeong Ok
    PHARMACEUTICALS, 2024, 17 (09)
  • [7] Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway
    Ali, Waqar
    Choe, Kyonghwan
    Park, Jun Sung
    Ahmad, Riaz
    Park, Hyun Young
    Kang, Min Hwa
    Park, Tae Ju
    Kim, Myeong Ok
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [8] Blumeatin inhibits LPS-induced inflammation of TLR4/NF-κB signaling pathway via targeting TLR4/MD-2
    Peng, Jun-Chao
    Qi, Wei-Jin
    Wang, Hong-Ying
    Zhou, Wei
    Yu, Xing-Jian
    Wang, Lu
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2025,
  • [9] Dangguishaoyao-San attenuates LPS-induced neuroinflammation via the TLRs/NF-κB signaling pathway
    Ding, Rui-Rui
    Chen, Wang
    Guo, Cong-Ying
    Liao, Wei-Tao
    Yang, Xia
    Liao, Feng-Er
    Lin, Jing-Ming
    Mei, Han-Fang
    Zeng, Yu
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 105 : 187 - 194
  • [10] Low-Intensity Pulsed Ultrasound Attenuates LPS-Induced Neuroinflammation and Memory Impairment by Modulation of TLR4/NF-κB Signaling and CREB/BDNF Expression
    Chen, Tao-Tao
    Lan, Tsuo-Hung
    Yang, Feng-Yi
    CEREBRAL CORTEX, 2019, 29 (04) : 1430 - 1438