Nested identification of subjective probabilities

被引:0
作者
Jacques H. Dreze
机构
[1] Université catholique de Louvain,CORE
来源
SERIEs | 2012年 / 3卷
关键词
Games; Decisions; Probability; Elicitation; D81; C72;
D O I
暂无
中图分类号
学科分类号
摘要
The theory of games against nature relies on complete preferences among all conceivable acts (case 1). Aumann and Drèze (Am Econ J Microecon 1(1):1–16, 2009) consider situations where preferences are defined only for a given set of acts (case 2). We extend these results to situations where (i) only the set of optimal elements from a given set of acts is known (case 3); (ii) only a single optimal act is known (case 4). To these four cases correspond four nested sets of admissible subjective probabilities. Cases 3 and 4 define the extent to which probabilities must be specified to solve a decision problem.
引用
收藏
页码:259 / 271
页数:12
相关论文
共 50 条
[31]   Probabilities from envariance? [J].
Mohrhoff, U .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (02) :221-229
[32]   Interval Probabilities and Enclosures [J].
Marcilia A. Campos ;
M. das Gracas dos Santos .
Computational and Applied Mathematics, 2013, 32 :413-423
[33]   The Probabilities of Conditionals Revisited [J].
Douven, Igor ;
Verbrugge, Sara .
COGNITIVE SCIENCE, 2013, 37 (04) :711-730
[34]   A Mechanism for Eliciting Probabilities [J].
Karni, Edi .
ECONOMETRICA, 2009, 77 (02) :603-606
[35]   A logic for uncertain probabilities [J].
Josang, A .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (03) :279-311
[36]   Underdetermination of infinitesimal probabilities [J].
Alexander R. Pruss .
Synthese, 2021, 198 :777-799
[37]   Powers, Probabilities, and Tendencies [J].
Michele Paolini Paoletti .
Philosophia, 2022, 50 :2035-2067
[38]   Interpreting imprecise probabilities [J].
Smith, Nicholas J. J. .
PHILOSOPHICAL QUARTERLY, 2025,
[39]   Interval Probabilities and Enclosures [J].
Campos, Marcilia A. ;
das Gracas dos Santos, M. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (03) :413-423
[40]   The paradox of deterministic probabilities [J].
Allori, Valia .
INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 2024, 67 (10) :3750-3769