Maximal inequality and complete convergences of non-identically distributed negatively associated sequences

被引:0
作者
Xu B. [1 ]
Cai G. [1 ]
机构
[1] Dept. of Statist., Zhejiang Gongshang Univ.
关键词
Complete convergence; Maximal inequality; NA; PA; Weighted sum;
D O I
10.1007/s11766-007-0309-z
中图分类号
学科分类号
摘要
A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discussed. The results obtained extend the results of Liang (1999, 2000). © Editorial Committee of Applied Mathematics 2007.
引用
收藏
页码:316 / 324
页数:8
相关论文
共 27 条
  • [1] Block H.W., Savits T.H., Shaked M., Some concepts of negative dependence, Ann Probab, 10, pp. 765-772, (1982)
  • [2] Burton R.M., Dabrowski A.R., Dehling H., An invariance principle of weakly associated random vectors, Stochastic Process Appl, 23, pp. 301-306, (1986)
  • [3] Cox J.T., Grimmett G., Central limit theorems for associated random variables and the percolation model, Ann Probab, 12, pp. 514-528, (1984)
  • [4] Ebrahimi N., Ghosh M., Multivariate negative dependence, Comm Statist Theory Methods, 10, 4, pp. 307-337, (1981)
  • [5] Esary J.D., Proschan F., Walkup D.W., Association of random variables with applications, Ann Math Statist, 44, pp. 1466-1474, (1967)
  • [6] Huang W.T., Xu B., Some maximal inequalities and complete convergences of negatively associated random sequences, Statist Probab Lett, 57, pp. 183-191, (2002)
  • [7] Joag D.K., Conditional negative dependence in stochastic ordering and interchangeable random variables, Topics in Statistical Dependence, (1990)
  • [8] Joag D.K., Proschan F., Negative association of random variables with applications, Ann Statist, 11, pp. 286-295, (1983)
  • [9] Karlin S., Rinott Y., Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, J Multivariate Anal, 10, pp. 467-498, (1980)
  • [10] Karlin S., Rinott Y., Classes of orderings of measures and related correlation inequalities. II. Multivariate reverse rule distributions, J Multivariate Anal, 10, pp. 499-516, (1980)