Operator splitting for dissipative delay equations

被引:0
|
作者
András Bátkai
Petra Csomós
Bálint Farkas
机构
[1] Eötvös Loránd University,Institute of Mathematics
[2] Bergische Universität Wuppertal,School of Mathematics and Natural Sciences
[3] Hungarian Academy of Sciences,MTA
来源
Semigroup Forum | 2017年 / 95卷
关键词
Lie–Trotter product formula; Operator splitting; Order of convergence; -semigroups; Delay equation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate Lie–Trotter product formulae for abstract nonlinear evolution equations with delay. Using results from the theory of nonlinear contraction semigroups in Hilbert spaces, we explain the convergence of the splitting procedure. The order of convergence is also investigated in detail, and some numerical illustrations are presented.
引用
收藏
页码:345 / 365
页数:20
相关论文
共 50 条
  • [1] Operator splitting for dissipative delay equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    SEMIGROUP FORUM, 2017, 95 (02) : 345 - 365
  • [2] Operator splitting for nonautonomous delay equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (03) : 315 - 324
  • [3] Operator splitting for delay equations
    Csomos, Petra
    Nickel, Gregor
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (10) : 2234 - 2246
  • [4] Operator splitting for non-autonomous evolution equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    Nickel, Gregor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2163 - 2190
  • [5] Corrected operator splitting for nonlinear parabolic equations
    Karlsen, KH
    Risebro, NH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 980 - 1003
  • [6] OPERATOR SPLITTING FOR PARTIAL DIFFERENTIAL EQUATIONS WITH BURGERS NONLINEARITY
    Holden, Helge
    Lubich, Christian
    Risebro, Nils Henrik
    MATHEMATICS OF COMPUTATION, 2013, 82 (281) : 173 - 185
  • [7] Operator splitting methods for the Lotka-Volterra equations
    Farago, Istvan
    Sebestyen, Gabriella Svantnerne
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (48) : 1 - 19
  • [8] Linear equations of the Sobolev type with integral delay operator
    Fedorov V.E.
    Omel'Chenko E.A.
    Russian Mathematics, 2014, 58 (1) : 60 - 69
  • [9] OPERATOR SPLITTING FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLUID EQUATIONS
    Holden, Helge
    Karlsen, Kenneth H.
    Karper, Trygve
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 719 - 748
  • [10] OPERATOR SPLITTING FOR WELL-POSED ACTIVE SCALAR EQUATIONS
    Holden, Helge
    Karlsen, Kenneth H.
    Karper, Trygve K.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 152 - 180