The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition

被引:0
作者
Shu-hong Chen
Zhong Tan
机构
[1] Xiamen University,School of Mathematical Science
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
-harmonic approximation; controllable growth condition; regularity; 35J70; 35J60; 35D10; 35B65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with the partial regularity for the weak solutions of energy minimizing p-harmonic maps under the controllable growth condition. We get the interior partial regularity by the p-harmonic approximation method together with the technique used to get the decay estimation on some Degenerate elliptic equations and the obstacle problem by Tan and Yan. In particular, we directly get the optimal regularity.
引用
收藏
页码:105 / 115
页数:10
相关论文
共 20 条
[1]  
Schoen R.(1982)A regularity theory for harmonic maps J Differential Geom 17 307-336
[2]  
Uhlenbeck K.(1988)Partial Hölder continuity for minima of certain energies among maps into Riemannian manifold Indiana Univ Math J 37 349-367
[3]  
Luckhaus S.(1990)-harmonic obstacle problems, I. Partial regularity theory Ann Mat Pura Appl Ser. IV 56 127-158
[4]  
Fuchs M.(1987)Mappings minimizing the Pure Appl Math 40 555-588
[5]  
Hardt R.(2006) norm of the gradient. Comm Science in China Ser A-Mathematics 49 599-610
[6]  
Lin F. H.(2003)Regularity of harmonic maps with the potential Science in China Ser A-Mathematics 46 499-505
[7]  
Chu Y. M.(1983)Regularity for weakly (K1,K2)-quasiregular mappings Ann Mat Pura Appl Ser IV 134 241-266
[8]  
Liu X. G.(1977)Everywhere-regularity for some quasilinear systems with a lack of ellipticity Acta Math 138 219-240
[9]  
Gao H. Y.(1993)Regularity for a class of non-linear elliptic systems Northeastern Math J 9 143-156
[10]  
Tolksdorf P.(1984)Regularity of weak solutions to some Degenerate elliptic equations and obstacle problem Arch Rational Mech Anal 86 125-145