Compact Surfaces with Constant Gaussian Curvature in Product Spaces

被引:0
作者
Juan A. Aledo
Victorino Lozano
José A. Pastor
机构
[1] Universidad de Castilla La Mancha,E.S.I. Informática
[2] I.E.S. Miguel de Cervantes,Facultad de Matemáticas
[3] Universidad de Murcia,undefined
来源
Mediterranean Journal of Mathematics | 2010年 / 7卷
关键词
Primary 53C42; Secondary 53C20; Compact surface with boundary; product space; Gaussian curvature; rotational surface; area estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the only compact surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} (resp. positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} and positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.
引用
收藏
页码:263 / 270
页数:7
相关论文
共 50 条
  • [41] Designing Bézier surfaces minimizing the L2-norm of the Gaussian curvature
    Guo-liang Mo
    Ming-hua Wu
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 142 - 148
  • [42] TOTAL MEAN CURVATURE SURFACES IN THE PRODUCT SPACE Sn X R AND APPLICATIONS
    Albujer, Alma L.
    da Silva, Sylvia F.
    dos Santos, Fabio R.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (02) : 346 - 365
  • [43] TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE IN DE SITTER 3-SPACE
    Lee, Sungwook
    Martin, Jacob
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (01): : 116 - 127
  • [44] NON-ZERO CONSTANT CURVATURE FACTORABLE SURFACES IN PSEUDO-GALILEAN SPACE
    Aydin, Muhittin Evren
    Kulahci, Mihriban
    Ogrenmis, Alper Osman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 247 - 259
  • [45] Constant sectional curvature surfaces with a semi-symmetric non-metric connection
    Aydin, Muhittin Evren
    Lopez, Rafael
    Mihai, Adela
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
  • [46] An estimate for the Gaussian curvature of minimal surfaces in Rm whose Gauss map is ramified over a set of hyperplanes
    Pham Hoang Ha
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 32 : 130 - 138
  • [47] Classification of Minimal Lorentzian Surfaces in S24(1) with Constant Gaussian and Normal Curvatures
    Dursun, Ugur
    Turgay, Nurettin Cenk
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (06): : 1295 - 1311
  • [48] Graph Surfaces Invariant by Parabolic Screw Motions with Constant Curvature in H2 x R
    Dursun, Ugur
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 215 - 224
  • [49] Evolution of hypersurfaces in RN by Gaussian curvature
    Marcati, Pierangelo
    Molinari, Manuela
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02): : 119 - 132
  • [50] Mesh segmentation driven by Gaussian curvature
    Yamauchi, H
    Gumhold, S
    Zayer, R
    Seidel, HP
    VISUAL COMPUTER, 2005, 21 (8-10) : 659 - 668