Compact Surfaces with Constant Gaussian Curvature in Product Spaces

被引:0
作者
Juan A. Aledo
Victorino Lozano
José A. Pastor
机构
[1] Universidad de Castilla La Mancha,E.S.I. Informática
[2] I.E.S. Miguel de Cervantes,Facultad de Matemáticas
[3] Universidad de Murcia,undefined
来源
Mediterranean Journal of Mathematics | 2010年 / 7卷
关键词
Primary 53C42; Secondary 53C20; Compact surface with boundary; product space; Gaussian curvature; rotational surface; area estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the only compact surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} (resp. positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} and positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.
引用
收藏
页码:263 / 270
页数:7
相关论文
共 50 条
  • [31] NeurCADRecon: Neural Representation for Reconstructing CAD Surfaces by Enforcing Zero Gaussian Curvature
    Dong, Qiujie
    Xu, Rui
    Wang, Pengfei
    Chen, Shuangmin
    Xin, Shiqing
    Jia, Xiaohong
    Wang, Wenping
    Tu, Changhe
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (04):
  • [32] Designing Bezier surfaces minimizing the L2-norm of the Gaussian curvature
    Mo Guo-liang
    Wu Ming-hua
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (01): : 142 - 148
  • [33] Self-folding Origami Surfaces of Non-Zero Gaussian Curvature
    Garza, Milton R.
    Hernandez, Edwin A. Peraza
    Hartl, Darren J.
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XIII, 2019, 10968
  • [34] On the Gaussian curvature of timelike surfaces in Lorentz-Minkowski 3-space
    Mazlum, Sumeyye Gur
    FILOMAT, 2023, 37 (28) : 9641 - 9656
  • [35] THE CONCAVITY OF THE GAUSSIAN CURVATURE OF THE CONVEX LEVEL SETS OF MINIMAL SURFACES WITH RESPECT TO THE HEIGHT
    Wang, Pei-he
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 267 (02) : 489 - 509
  • [36] K-surfaces: Bezier-Splines Interpolating at Gaussian Curvature Extrema
    Djuren, Tobias
    Kohlbrenner, Maximilian
    Alexa, Marc
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [37] Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map
    Aledo, Juan A.
    Espinar, José M.
    Gálvez, José A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (08) : 1357 - 1369
  • [38] Mixed type surfaces with bounded Gaussian curvature in three-dimensional Lorentzian manifolds
    Honda, Atsufumi
    Saji, Kentaro
    Teramoto, Keisuke
    ADVANCES IN MATHEMATICS, 2020, 365
  • [39] SURFACES IN R+3 WITH THE SAME GAUSSIAN CURVATURE INDUCED BY THE EUCLIDEAN AND HYPERBOLIC METRICS
    Barroso, Nilton
    Roitman, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 275 (01) : 19 - 37