Compact Surfaces with Constant Gaussian Curvature in Product Spaces

被引:0
作者
Juan A. Aledo
Victorino Lozano
José A. Pastor
机构
[1] Universidad de Castilla La Mancha,E.S.I. Informática
[2] I.E.S. Miguel de Cervantes,Facultad de Matemáticas
[3] Universidad de Murcia,undefined
来源
Mediterranean Journal of Mathematics | 2010年 / 7卷
关键词
Primary 53C42; Secondary 53C20; Compact surface with boundary; product space; Gaussian curvature; rotational surface; area estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the only compact surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} (resp. positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{H}^{2}\times\mathbb{R}}$$\end{document} and positive constant Gaussian curvature greater than 1 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{2}\times\mathbb{R}}$$\end{document} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.
引用
收藏
页码:263 / 270
页数:7
相关论文
共 50 条