3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a global existence theorem

被引:0
作者
Ivan Dražić
Nermina Mujaković
机构
[1] University of Rijeka,Faculty of Engineering
[2] University of Rijeka,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
micropolar fluid; spherical symmetry; generalized solution; global existence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the nonstationary 3-D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be the subset of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{R}^{3}$\end{document} bounded with two concentric spheres that present the solid thermo-insulated walls. In the thermodynamical sense the fluid is perfect and polytropic. We assume that the initial density and temperature are bounded from below with a positive constant and that the initial data are sufficiently smooth spherically symmetric functions. The starting problem is transformed into the Lagrangian description on the spatial domain ]0,1[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$]0,1[$\end{document}. In this work we prove that our problem has a generalized solution for any time interval [0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,T ]$\end{document}, T∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T\in\mathbf{R}^{+}$\end{document}. The proof is based on the local existence theorem and the extension principle.
引用
收藏
相关论文
共 37 条
  • [11] Abdel-Khalik SI(1998)One-dimensional flow of a compressible viscous micropolar fluid: a local existence theorem Glas. Mat. 33 19-30
  • [12] Jeter SM(2008)Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: regularity of the solution Bound. Value Probl. 2008 199-208
  • [13] Sadowski DL(2010)One-dimensional compressible viscous micropolar fluid model: stabilization of the solution for the Cauchy problem Bound. Value Probl. 2010 339-374
  • [14] Chen M(2014)The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature Nonlinear Anal., Real World Appl. 19 223-250
  • [15] Borrelli A(2012)3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a local existence theorem Bound. Value Probl. 2012 undefined-undefined
  • [16] Giantesio G(2014)3-D flow of a compressible viscous micropolar fluid with spherical symmetry: uniqueness of a generalized solution Bound. Value Probl. 2014 undefined-undefined
  • [17] Patria MC(1998)One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem Glas. Mat. 33 undefined-undefined
  • [18] Qin Y(1996)Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain Commun. Math. Phys. 178 undefined-undefined
  • [19] Wang T(1988)Two-dimensional Navier-Stokes flow with measures as initial vorticity Arch. Ration. Mech. Anal. 104 undefined-undefined
  • [20] Hu G(undefined)undefined undefined undefined undefined-undefined