3-D flow of a compressible viscous micropolar fluid with spherical symmetry: a global existence theorem

被引:0
作者
Ivan Dražić
Nermina Mujaković
机构
[1] University of Rijeka,Faculty of Engineering
[2] University of Rijeka,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
micropolar fluid; spherical symmetry; generalized solution; global existence;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the nonstationary 3-D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be the subset of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{R}^{3}$\end{document} bounded with two concentric spheres that present the solid thermo-insulated walls. In the thermodynamical sense the fluid is perfect and polytropic. We assume that the initial density and temperature are bounded from below with a positive constant and that the initial data are sufficiently smooth spherically symmetric functions. The starting problem is transformed into the Lagrangian description on the spatial domain ]0,1[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$]0,1[$\end{document}. In this work we prove that our problem has a generalized solution for any time interval [0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,T ]$\end{document}, T∈R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T\in\mathbf{R}^{+}$\end{document}. The proof is based on the local existence theorem and the extension principle.
引用
收藏
相关论文
共 37 条
  • [1] Eringen CA(1964)Simple microfluids Int. J. Eng. Sci. 2 205-217
  • [2] Nowakowski B(2013)Large time existence of strong solutions to micropolar equations in cylindrical domains Nonlinear Anal., Real World Appl. 14 635-660
  • [3] Chen M(2013)Blowup criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum Nonlinear Anal. TMA 79 1-11
  • [4] Huang B(1999)Laminar fluid behavior in microchannels using micropolar fluid theory Sens. Actuators A, Phys. 73 101-108
  • [5] Zhang J(2005)A microfluidic experimental platform with internal pressure measurements Sens. Actuators A, Phys. 118 212-221
  • [6] Papautsky I(2013)Global well-posedness of the 2D incompressible micropolar fluid flows with partial viscosity and angular viscosity Acta Math. Sci. 33 929-935
  • [7] Brazzle J(2015)An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid Commun. Nonlinear Sci. Numer. Simul. 20 121-135
  • [8] Ameel T(2012)The Cauchy problem for a 1D compressible viscous micropolar fluid model: analysis of the stabilization and the regularity Nonlinear Anal., Real World Appl. 13 1010-1029
  • [9] Frazier AB(2013)Blow-up criterion for 3D compressible viscous magneto-micropolar fluids with initial vacuum Bound. Value Probl. 2013 225-247
  • [10] Kohl MJ(2015)Global weak solutions of 3d compressible micropolar fluids with discontinuous initial data and vacuum Commun. Math. Sci. 13 71-91