On Some Fourier Multipliers for Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p(\mathbb {R}^n)$$\end{document} with Restricted Smoothness Conditions

被引:0
作者
Jingren Qiang
Peng Chen
Shanlin Huang
Quan Zheng
机构
[1] Wuhan College,School of Information
[2] Sun Yat-sen (Zhongshan) University,Department of Mathematics
[3] Huazhong University of Science and Technology,School of Mathematics and Statistics
关键词
Fourier multipliers; spaces; Hörmander multipliers; Interpolation; Primary 42B15; Secondary 42B30;
D O I
10.1007/s12220-019-00211-5
中图分类号
学科分类号
摘要
Given 0<p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<2$$\end{document}, we consider Mikhlin and Hörmander type multiplier theorems on Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p(\mathbb {R}^n)$$\end{document} with restricted smoothness conditions. More precisely, we assume that m∈Ck(Rn\{0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in C^k(\mathbb {R}^n\setminus \{0\})$$\end{document}, where k=[n|1p-12|]+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\big [n|\frac{1}{p}-\frac{1}{2}|\big ]+1$$\end{document}, meanwhile, we have restrictions on the order of differentiation with respect to each coordinate. In particular, if p>23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>\frac{2}{3}$$\end{document}, we only need to differentiate at most once with respect to any single coordinate.
引用
收藏
页码:3672 / 3697
页数:25
相关论文
共 50 条
[41]   VMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {VMO}}$$\end{document} Spaces Associated with Neumann Laplacian [J].
Mingming Cao ;
Kôzô Yabuta .
The Journal of Geometric Analysis, 2022, 32 (2)
[45]   Multiplication and Composition Operators on Weak Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} Spaces [J].
René Erlin Castillo ;
Fabio Andrés Vallejo Narvaez ;
Julio C. Ramos Fernández .
Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 (3) :927-973
[46]   Li–Yorke chaos for composition operators on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-spaces [J].
N. C. Bernardes ;
U. B. Darji ;
B. Pires .
Monatshefte für Mathematik, 2020, 191 (1) :13-35
[47]   Linear Independence of Time–Frequency Translates in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Spaces [J].
Jorge Antezana ;
Joaquim Bruna ;
Enrique Pujals .
Journal of Fourier Analysis and Applications, 2020, 26 (4)
[49]   Essential Norms of Weighted Composition Operators on 𝓝p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {N}_{p}$\end{document}-Spaces in the Ball [J].
Hu Bingyang ;
Le Hai Khoi ;
Trieu Le .
Vietnam Journal of Mathematics, 2016, 44 (2) :431-439
[50]   QK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal Q}_K}$$\end{document} Spaces: A Brief and Selective Survey [J].
Guanlong Bao ;
Hasi Wulan .
Acta Mathematica Scientia, 2021, 41 (6) :2039-2054