On Some Fourier Multipliers for Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p(\mathbb {R}^n)$$\end{document} with Restricted Smoothness Conditions

被引:0
|
作者
Jingren Qiang
Peng Chen
Shanlin Huang
Quan Zheng
机构
[1] Wuhan College,School of Information
[2] Sun Yat-sen (Zhongshan) University,Department of Mathematics
[3] Huazhong University of Science and Technology,School of Mathematics and Statistics
关键词
Fourier multipliers; spaces; Hörmander multipliers; Interpolation; Primary 42B15; Secondary 42B30;
D O I
10.1007/s12220-019-00211-5
中图分类号
学科分类号
摘要
Given 0<p<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<2$$\end{document}, we consider Mikhlin and Hörmander type multiplier theorems on Hp(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p(\mathbb {R}^n)$$\end{document} with restricted smoothness conditions. More precisely, we assume that m∈Ck(Rn\{0})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in C^k(\mathbb {R}^n\setminus \{0\})$$\end{document}, where k=[n|1p-12|]+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\big [n|\frac{1}{p}-\frac{1}{2}|\big ]+1$$\end{document}, meanwhile, we have restrictions on the order of differentiation with respect to each coordinate. In particular, if p>23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>\frac{2}{3}$$\end{document}, we only need to differentiate at most once with respect to any single coordinate.
引用
收藏
页码:3672 / 3697
页数:25
相关论文
共 50 条