Almost square and octahedral norms in tensor products of Banach spaces

被引:0
作者
Johann Langemets
Vegard Lima
Abraham Rueda Zoca
机构
[1] University of Tartu,Institute of Mathematics and Statistics
[2] NTNU,Facultad de Ciencias. Departamento de Análisis Matemático
[3] Norwegian University of Science and Technology,undefined
[4] Universidad de Granada,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2017年 / 111卷
关键词
Octahedral norms; Almost squareness; Tensor products; Spaces of operators; Primary 46B20; Secondary 46B04; 46B28;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this note is to study some geometrical properties like diameter two properties, octahedrality and almost squareness in the setting of (symmetric) tensor product spaces. In particular, we show that the injective tensor product of two octahedral Banach spaces is always octahedral, the injective tensor product of an almost square Banach space with any Banach space is almost square, and the injective symmetric tensor product of an octahedral Banach space is octahedral.
引用
收藏
页码:841 / 853
页数:12
相关论文
共 44 条
[1]  
Abrahamsen TA(2015)Linear extensions, almost isometries, and diameter two Extr. Math. 30 135-151
[2]  
Abrahamsen TA(2016)Diameter 2 properties and convexity Stud. Math. 232 227-242
[3]  
Hájek P(2016)Almost square Banach spaces J. Math. Anal. Appl. 434 1549-1565
[4]  
Nygaard O(2013)Remarks on diameter 2 properties J. Conv. Anal. 20 439-452
[5]  
Talponen J(2009)Slices in the unit ball of the symmetric tensor product of Ark. Mat. 47 1-12
[6]  
Troyanski S(2010) and J. Func. Anal. 259 842-856
[7]  
Abrahamsen TA(2015)Weakly open sets in the unit ball of some Banach spaces and the centralizer J. Conv. Anal. 22 1-17
[8]  
Langemets J(2011)Stability results on diameter two properties J. Math. Anal. Appl. 383 461-473
[9]  
Lima V(2015)Weakly open sets in the unit ball of the projective tensor product of Banach spaces Adv. Math. 269 56-70
[10]  
Abrahamsen TA(2015)Extreme differences between weakly open subsets and convex combinations of slices in Banach spaces J. Math. Anal. App. 427 171-184