Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids

被引:0
|
作者
Peter Bjørn Jørgensen
Arghya Bhowmik
机构
[1] Technical University of Denmark,Department of Energy Conversion and Storage
来源
npj Computational Materials | / 8卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Electron density ρ(r→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (\overrightarrow{{{{\bf{r}}}}})$$\end{document} is the fundamental variable in the calculation of ground state energy with density functional theory (DFT). Beyond total energy, features and changes in ρ(r→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (\overrightarrow{{{{\bf{r}}}}})$$\end{document} distributions are often used to capture critical physicochemical phenomena in functional materials. We present a machine learning framework for the prediction of ρ(r→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (\overrightarrow{{{{\bf{r}}}}})$$\end{document}. The model is based on equivariant graph neural networks and the electron density is predicted at special query point vertices that are part of the message-passing graph, but only receive messages. The model is tested across multiple datasets of molecules (QM9), liquid ethylene carbonate electrolyte (EC) and LixNiyMnzCo(1-y-z)O2 lithium ion battery cathodes (NMC). For QM9 molecules, the accuracy of the proposed model exceeds typical variability in ρ(r→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (\overrightarrow{{{{\bf{r}}}}})$$\end{document} obtained from DFT done with different exchange-correlation functionals. The accuracy on all three datasets is beyond state of the art and the computation time is orders of magnitude faster than DFT.
引用
收藏
相关论文
共 50 条
  • [21] Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks
    Lou, Yuchen
    Ganose, Alex M.
    FARADAY DISCUSSIONS, 2025, 256 (00) : 255 - 274
  • [22] Fast Haar Transforms for Graph Neural Networks
    Li, Ming
    Ma, Zheng
    Wang, Yu Guang
    Zhuang, Xiaosheng
    NEURAL NETWORKS, 2020, 128 : 188 - 198
  • [23] FAST GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 467 - 471
  • [24] Fast Temporal Wavelet Graph Neural Networks
    Duc Thien Nguyen
    Manh Duc Tuan Nguyen
    Truong Son Hy
    Kondor, Risi
    NEURIPS WORKSHOP ON SYMMETRY AND GEOMETRY IN NEURAL REPRESENTATIONS, 2023, 228 : 35 - 54
  • [25] Fast Haar Transforms for Graph Neural Networks
    Li, Ming
    Ma, Zheng
    Wang, Yu Guang
    Zhuang, Xiaosheng
    Neural Networks, 2020, 128 : 188 - 198
  • [26] IGNNITION: Fast Prototyping of Graph Neural Networks for Communication Networks
    Pujol-Perich, David
    Suarez-Varela, Jose
    Ferriol-Galmes, Miguel
    Wu, Bo
    Xiao, Shihan
    Cheng, Xiangle
    Cabellos-Aparicio, Albert
    Barlet-Ros, Pere
    PROCEEDINGS OF THE 2021 SIGCOMM 2021 POSTER AND DEMO SESSIONS, SIGCOMM 2021 DEMOS AND POSTERS, 2024, : 71 - 73
  • [27] Learning Atomic Multipoles: Prediction of the Electrostatic Potential with Equivariant Graph Neural Networks
    Thurlemann, Moritz
    Boselt, Lennard
    Riniker, Sereina
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (03) : 1701 - 1710
  • [28] Training Graph Neural Networks by Graphon Estimation
    Hu, Ziqing
    Fang, Yihao
    Lin, Lizhen
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5153 - 5162
  • [29] Graph neural networks for strut-based architected solids
    Grega, I.
    Batatia, I.
    Indurkar, P.P.
    Csányi, G.
    Karlapati, S.
    Deshpande, V.S.
    Journal of the Mechanics and Physics of Solids, 2025, 195
  • [30] GemNet: Universal Directional Graph Neural Networks for Molecules
    Gasteiger, Johannes
    Becker, Florian
    Guennemann, Stephan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34