PDE/Statistical Mechanics Duality: Relation Between Guerra’s Interpolated p-Spin Ferromagnets and the Burgers Hierarchy

被引:0
作者
Alberto Fachechi
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “Ennio De Giorgi”
[2] Istituto Nazionale di Alta Matematica,GNFM
[3] Istituto Nazionale di Fisica Nucleare,INdAM, Gruppo Nazionale di Fisica Matematica
来源
Journal of Statistical Physics | 2021年 / 183卷
关键词
-spin; Statistical mechanics; Burgers hierarchy; Nonlinear systems; Mean-field theory; PDE;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the duality relating the equilibrium dynamics of the mean-field p-spin ferromagnets at finite size in the Guerra’s interpolation scheme and the Burgers hierarchy. In particular, we prove that—for fixed p—the expectation value of the order parameter on the first side w.r.t. the generalized partition function satisfies the p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document}-th element in the aforementioned class of nonlinear equations. In the light of this duality, we interpret the phase transitions in the thermodynamic limit of the statistical mechanics model with the development of shock waves in the PDE side. We also obtain the solutions for the p-spin ferromagnets at fixed N, allowing us to easily generate specific solutions of the corresponding equation in the Burgers hierarchy. Finally, we obtain an effective description of the finite N equilibrium dynamics of the p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} model with some standard tools in PDE side.
引用
收藏
相关论文
共 174 条
  • [11] Alemanno F(1982)Neural networks and physical systems with emergent collective computational abilities Proc. Natl. Acad. Sci. 79 2554-267
  • [12] Barra A(1985)Information storage and retrieval in spin-glass like neural networks J. Phys. Lett. 46 L-359:365-97
  • [13] Centonze M(1987)Associative recall of memory without errors Phys. Rev. A 35 380-1300
  • [14] Fachechi A(1998)On the stability of the quenched state in mean field spin glass models J. Stat. Phys. 92 765-1215
  • [15] Agliari E(1998)General properties of overlap distributions in disordered spin systems. Towards Parisi ultrametricity J. Phys. A 31 9149-633
  • [16] Alemanno F(2003)Broken replica symmetry bounds in the mean field spin glass model Commun. Math. Phys. 233 1-11838
  • [17] Barra A(2002)Central limit theorem for fluctuations in the high temperature region of the Sherrington–Kirkpatrick spin glass model J. Math. Phys. 43 6224-5410
  • [18] Fachechi A(2011)Ghirlanda–Guerra identities and ultrametricity: an elementary proof in the discrete case C. R. Acad. Sci. Paris 349 813-253
  • [19] Amit DJ(2012)A unified stability property in spin glasses Commun. Math. Phys. 313 781-1309
  • [20] Gutfreund H(2013)The Parisi ultrametricity conjecture Ann. of Math. 177 383-1179