PDE/Statistical Mechanics Duality: Relation Between Guerra’s Interpolated p-Spin Ferromagnets and the Burgers Hierarchy

被引:0
作者
Alberto Fachechi
机构
[1] Università del Salento,Dipartimento di Matematica e Fisica “Ennio De Giorgi”
[2] Istituto Nazionale di Alta Matematica,GNFM
[3] Istituto Nazionale di Fisica Nucleare,INdAM, Gruppo Nazionale di Fisica Matematica
来源
Journal of Statistical Physics | 2021年 / 183卷
关键词
-spin; Statistical mechanics; Burgers hierarchy; Nonlinear systems; Mean-field theory; PDE;
D O I
暂无
中图分类号
学科分类号
摘要
We examine the duality relating the equilibrium dynamics of the mean-field p-spin ferromagnets at finite size in the Guerra’s interpolation scheme and the Burgers hierarchy. In particular, we prove that—for fixed p—the expectation value of the order parameter on the first side w.r.t. the generalized partition function satisfies the p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p-1$$\end{document}-th element in the aforementioned class of nonlinear equations. In the light of this duality, we interpret the phase transitions in the thermodynamic limit of the statistical mechanics model with the development of shock waves in the PDE side. We also obtain the solutions for the p-spin ferromagnets at fixed N, allowing us to easily generate specific solutions of the corresponding equation in the Burgers hierarchy. Finally, we obtain an effective description of the finite N equilibrium dynamics of the p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} model with some standard tools in PDE side.
引用
收藏
相关论文
共 174 条
  • [1] Sherrington D(1975)Solvable model of a spin-glass Phys. Rev. Lett. 35 1792-79
  • [2] Kirkpatrick S(2002)The thermodynamic limit in mean field spin glass models Commun. Math. Phys. 230 71-974
  • [3] Guerra F(1975)Theory of spin glasses J. Phys. F 5 965-444
  • [4] Toninelli FL(2015)Deep learning Nature 521 436-1533
  • [5] Edwards SF(2020)Neural networks with a redundant representation: detecting the undetectable Phys. Rev. Lett. 124 028301-222
  • [6] Anderson PW(2019)Dreaming neural networks: rigorous results J. Stat. Mech. 2019 083503-40
  • [7] LeCun Y(1985)Storing infinite numbers of patterns in a spin-glass model of neural networks Phys. Rev. Lett. 55 1530-2558
  • [8] Bengio Y(2018)A new mechanical approach to handle generalized Hopfield neural networks Neural Netw. 106 205-12
  • [9] Hinton G(1993)Dynamics of fully connected attractor neural networks near saturation Phys. Rev. Lett. 71 3886-6237
  • [10] Agliari E(2019)Dreaming neural networks: forgetting spurious memories and reinforcing pure ones Neural Netw. 112 24-790