Astragaloside IV protects human cardiomyocytes from hypoxia/reoxygenation injury by regulating miR-101a

被引:0
作者
Yang Wu
Zongjing Fan
Zhengju Chen
Jiqiang Hu
Jie Cui
Yang Liu
Yao Wang
Bin Guo
Juan Shen
Liandi Xie
机构
[1] Beijing University of Chinese Medicine,Department of CardiologyDong Fang HospitalFengtai District
[2] Beijing 100Biotech Co.,Technical Consultant Department of Technology Center
[3] Ltd,undefined
[4] Beijing University of Chinese Medicine,undefined
来源
Molecular and Cellular Biochemistry | 2020年 / 470卷
关键词
Hypoxia/reoxygenation injury; Astragaloside IV; MiR-101a; MAPK signaling pathway;
D O I
暂无
中图分类号
学科分类号
摘要
Astragaloside IV (AS/IV) is one of the extracted components from the traditional Chinese medicine Astragalus which has been demonstrated to have potential capacity for anti-inflammation activity and for treating cardiovascular disease. Our purpose was to determine the function and underlying molecular mechanism of AS/IV in hypoxia/reoxygenation (H/R) injured in cardiomyocytes. Differentially expressed genes (DEGs) were screened using bioinformatic analysis, and the molecular targeting relationship was verified by the dual-luciferase report system. H/R injured cardiomyocytes were employed to explore the effect of AS/IV. QRT-PCR and Western blot analysis were applied to detect the expression of mRNA and proteins, respectively. Additionally, superoxide dismutase (SOD), lactic dehydrogenase (LDH) and MDA (malondialdehyde) levels were detected to determine the oxidative damage. Cell viability was assessed by CCK-8, and flow cytometry was used to evaluate cell apoptosis ratio. TGFBR1 and TLR2 were selected as DEGs. Additionally, AS/IV could enhance cell proliferation and upregulated miR-101a expression, which suppressed TGFBR1 and TLR2 expression in H/R injured cardiomyocytes. Moreover, the results of Western blot exhibited that the downstream genes (p-ERK and p-p38) in the MAPK signaling pathway were suppressed, which meant AS/IV could inhibit this pathway in H/R injured cardiomyocytes. Overall, this study demonstrated AS/IV could attenuate H/R injury in human cardiomyocytes via the miR-101a/TGFBR1/TLR2/MAPK signaling pathway axis, which means that it could serve as a possible alternate for H/R treatment.
引用
收藏
页码:41 / 51
页数:10
相关论文
共 262 条
  • [71] Zhou Y(undefined)undefined undefined undefined undefined-undefined
  • [72] Ding M(undefined)undefined undefined undefined undefined-undefined
  • [73] Hua H(undefined)undefined undefined undefined undefined-undefined
  • [74] Derynck R(undefined)undefined undefined undefined undefined-undefined
  • [75] Zhang YE(undefined)undefined undefined undefined undefined-undefined
  • [76] Vilahur G(undefined)undefined undefined undefined undefined-undefined
  • [77] Badimon L(undefined)undefined undefined undefined undefined-undefined
  • [78] Ha T(undefined)undefined undefined undefined undefined-undefined
  • [79] Liu L(undefined)undefined undefined undefined undefined-undefined
  • [80] Kelley J(undefined)undefined undefined undefined undefined-undefined