On Finite Groups with Restrictions on Centralizers

被引:0
作者
V. A. Antonov
I. A. Tyurina
A. P. Cheskidov
机构
[1] South-Ural State University,
[2] Indiana University,undefined
来源
Mathematical Notes | 2002年 / 71卷
关键词
finite group; centralizer; non-Abelian group; nilpotent group; Sylow subgroup; Schur multiplier; Frobenius group;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by w(n) the number of factors in a representation of a positive integer n as a product of primes. If H is a subgroup of a finite group G, then we set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$w(H) = w(|H|)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v(G) = {\text{max\{ }}w(C(g))|g \in G\backslash Z(G)\} $$ \end{document}. In the present paper we present the complete description of groups with nontrivial center that satisfy the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$v(G) = 4$$ \end{document}.
引用
收藏
页码:443 / 454
页数:11
相关论文
共 10 条
  • [1] Bianchi M.(1990)Groups with small centralizers of non-central elements Boll. Un. Mat. Ital. Ser. A 4 365-370
  • [2] Manz O.(1992)Gruppi con piccoli centralizzanti Boll. Un. Mat. Ital. 6-B 649-663
  • [3] Scarselli A.(2001)Groups with small centralizers Mat. Zametki 69 643-655
  • [4] Antonov V. A.(1940)The classification of prime-power groups J. Reine Angew. Math. 182 130-141
  • [5] Tyurina I. A.(1975)-groups with abelian centralizers Proc. London Math. Soc. (3) 30 55-75
  • [6] Cheskidov A. P.(1987)Finite groups with a modular lattice of centralizers Algebra i Logika 26 653-683
  • [7] Hall P.(1988)On groups whose noncentral elements have the same finite number of conjugates Boll. Un. Mat. Ital. Ser. A 3 391-400
  • [8] Rocke D. M.(undefined)undefined undefined undefined undefined-undefined
  • [9] Antonov V. A.(undefined)undefined undefined undefined undefined-undefined
  • [10] Verardi L.(undefined)undefined undefined undefined undefined-undefined