Let μ≥ω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mu \geq \omega}$$\end{document} be regular, assume the Generalized Continuum Hypothesis and the principle □λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\square_\lambda}$$\end{document} holds for every singular λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\lambda}$$\end{document} with cf(λ)≤μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm cf}(\lambda) \leq \mu}$$\end{document}. Let X be a graph with chromatic number greater than μ+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mu^+}$$\end{document}. Then X contains a μ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mu}$$\end{document}-connected subgraph Y of X whose chromatic number is greater than μ+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mu^+}$$\end{document}.
机构:
United Arab Emirates Univ, Dept Math Sci, Coll Sci, Al Ain, U Arab EmiratesUnited Arab Emirates Univ, Dept Math Sci, Coll Sci, Al Ain, U Arab Emirates
机构:
Keio Univ, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, JapanKeio Univ, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
Atsuji, Atsushi
Kaneko, Hiroshi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, 1-3 Kagurazaka,Shinjuku Ku, Tokyo 1628601, JapanKeio Univ, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan