On the connectivity of infinite graphs

被引:0
|
作者
P. Komjáth
机构
[1] Eötvös Loránd University,Institute of Mathematics
来源
Acta Mathematica Hungarica | 2018年 / 154卷
关键词
infinite graph; chromatic number; connectivity; 03E05; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ≥ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu \geq \omega}$$\end{document} be regular, assume the Generalized Continuum Hypothesis and the principle □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document} holds for every singular λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} with cf(λ)≤μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cf}(\lambda) \leq \mu}$$\end{document}. Let X be a graph with chromatic number greater than μ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu^+}$$\end{document}. Then X contains a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-connected subgraph Y of X whose chromatic number is greater than μ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu^+}$$\end{document}.
引用
收藏
页码:215 / 222
页数:7
相关论文
共 50 条
  • [21] α-Extendable paths in infinite graphs
    Polat, N
    DISCRETE MATHEMATICS, 2005, 291 (1-3) : 175 - 189
  • [22] SECRET SHARING ON INFINITE GRAPHS
    Csirmaz, Laszlo
    TATRACRYPT '07 - 7TH CENTRAL EUROPE CONFERENCE OF CRYPTOLOGY, 2008, 41 : 1 - 18
  • [23] ON THE PARTITION DIMENSION OF INFINITE GRAPHS
    Imran, Muhammad
    Vetrik, Tomas
    MATHEMATICAL REPORTS, 2022, 24 (03): : 433 - 442
  • [24] Nevanlinna Theory on Infinite Graphs
    Atsuji, Atsushi
    Kaneko, Hiroshi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [25] Cycles are the only connectivity double-critical graphs
    Zhao, Yanhua
    UTILITAS MATHEMATICA, 2020, 117 : 117 - 123
  • [26] ON THE CONNECTIVITY OF CAYLEY COLOR GRAPHS
    HUANG Qiongxiang
    LIU Xin Department of Mathematics
    SystemsScienceandMathematicalSciences, 1993, (03) : 227 - 230
  • [27] Algebraic connectivity of directed graphs
    Wu, CW
    LINEAR & MULTILINEAR ALGEBRA, 2005, 53 (03): : 203 - 223
  • [28] Increasing the connectivity of the star graphs
    Cheng, E
    Lipman, MJ
    NETWORKS, 2002, 40 (03) : 165 - 169
  • [29] Connectivity status of fuzzy graphs
    Binu, M.
    Mathew, Sunil
    Mordeson, J. N.
    INFORMATION SCIENCES, 2021, 573 : 382 - 395
  • [30] Connectivity Graphs of Uncertainty Regions
    Chambers, Erin
    Erickson, Alejandro
    Fekete, Sandor P.
    Lenchner, Jonathan
    Sember, Jeff
    Srinivasan, Venkatesh
    Stege, Ulrike
    Stolpner, Svetlana
    Weibel, Christophe
    Whitesides, Sue
    ALGORITHMICA, 2017, 78 (03) : 990 - 1019