On the connectivity of infinite graphs

被引:0
|
作者
P. Komjáth
机构
[1] Eötvös Loránd University,Institute of Mathematics
来源
Acta Mathematica Hungarica | 2018年 / 154卷
关键词
infinite graph; chromatic number; connectivity; 03E05; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ≥ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu \geq \omega}$$\end{document} be regular, assume the Generalized Continuum Hypothesis and the principle □λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square_\lambda}$$\end{document} holds for every singular λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} with cf(λ)≤μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm cf}(\lambda) \leq \mu}$$\end{document}. Let X be a graph with chromatic number greater than μ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu^+}$$\end{document}. Then X contains a μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu}$$\end{document}-connected subgraph Y of X whose chromatic number is greater than μ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu^+}$$\end{document}.
引用
收藏
页码:215 / 222
页数:7
相关论文
共 50 条
  • [1] On the connectivity of infinite graphs
    Komjath, P.
    ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 215 - 222
  • [2] Asymptotic connectivity of infinite graphs
    Bahls, Patrick
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2250 - 2259
  • [3] On the connectivity of infinite graphs and 2-complexes
    Ayala, R
    Chavez, MJ
    Marquez, A
    Quintero, A
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 13 - 37
  • [4] A note on chromatic number and connectivity of infinite graphs
    Komjath, Peter
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 196 (01) : 499 - 506
  • [5] A note on chromatic number and connectivity of infinite graphs
    Péter Komjáth
    Israel Journal of Mathematics, 2013, 196 : 499 - 506
  • [6] On local connectivity of graphs
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 63 - 66
  • [7] On the Connectivity of Visibility Graphs
    Payne, Michael S.
    Por, Attila
    Valtr, Pavel
    Wood, David R.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) : 669 - 681
  • [8] A connectivity game for graphs
    Amer, R
    Giménez, JM
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 60 (03) : 453 - 470
  • [9] The Connectivity of Token Graphs
    J. Leaños
    A. L. Trujillo-Negrete
    Graphs and Combinatorics, 2018, 34 : 777 - 790
  • [10] A connectivity game for graphs
    Rafael Amer
    José Miguel Giménez
    Mathematical Methods of Operations Research, 2004, 60 : 453 - 470