A self-adaptive multi-objective harmony search based fuzzy clustering technique for image segmentation

被引:6
作者
Wan C. [1 ]
Yuan X. [1 ,2 ]
Dai X. [1 ]
Zhang T. [1 ]
He Q. [2 ]
机构
[1] College of Electrical and Information Engineering, Hunan University, Changsha
[2] Guangxi Colleges and Universities Key Laboratory of Cloud Computing and Complex Systems, Guilin University of Electronic Technology, Guilin
基金
中国国家自然科学基金;
关键词
Cluster validity measure; Harmony search (HS); Image segmentation; Multi-objective optimization; Self-adaptive mechanism;
D O I
10.1007/s12652-018-0762-y
中图分类号
学科分类号
摘要
Image segmentation can be considered as a problem of clustering since the pixels in the digital image are clustered in term of some evaluation criteria. Generally, clustering technique in image segmentation employs a single objective which can not reach ideal result for various kinds of images. Moreover, fuzzy c-means (FCM) algorithms which determine the fuzzy partition matrix of the data set by solving the clustering problem with conditional constraints and obtain the clustering output, have been verified effective and efficient for image segmentation. In fact, these FCM algorithms still have some shortcomings including: being sensitive to outliers and noise, key parameters need to be adjusted with experience. In view of this, a self-adaptive multi-objective harmony search based fuzzy clustering (SAMOHSFC) technique for image segmentation is proposed in this paper. SAMOHSFC technique encodes several cluster centers in one harmony vector and optimizes multiple objectives. In addition, we consider the spatial information of the image as an attribute of the input data set besides the attribute of gray information of input image in the SAMOHSFC. Superiority of the proposed algorithm over three classic segmentation algorithms has been verified for a synthetic and two real images from quantitative and visual aspect. In the experiment, the effect of different kinds of spatial information on the segmentation performance of the SAMOHSFC is analyzed. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:14943 / 14958
页数:15
相关论文
共 50 条
  • [31] Indicator Weighted Based Multi-Objective Approach using Self-Adaptive Neighborhood Operator
    BenMansour, Imen
    Alaya, Ines
    Tagina, Moncef
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 338 - 347
  • [32] A quantum multi-objective optimization algorithm based on harmony search method
    Sadeghi Hesar, Alireza
    Kamel, Seyed Reza
    Houshmand, Mahboobeh
    SOFT COMPUTING, 2021, 25 (14) : 9427 - 9439
  • [33] Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing time
    Li, Rui
    Gong, Wenyin
    Lu, Chao
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 168
  • [34] A quantum multi-objective optimization algorithm based on harmony search method
    Alireza Sadeghi Hesar
    Seyed Reza Kamel
    Mahboobeh Houshmand
    Soft Computing, 2021, 25 : 9427 - 9439
  • [35] Broad learning approach to Surrogate-Assisted Multi-Objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation
    Zhao, Feng
    Liu, Yu
    Liu, Hanqiang
    Fan, Jiulun
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [36] Adaptive multi-objective archive-based hybrid scatter search for segmentation in lung computed tomography imaging
    Bong, Chin Wei
    Lam, Hong Yoong
    Khader, Ahamad Tajudin
    Kamarulzaman, Hamzah
    ENGINEERING OPTIMIZATION, 2012, 44 (03) : 327 - 350
  • [37] A knee point driven Kriging-assisted multi-objective robust fuzzy clustering algorithm for image segmentation
    Zhao, Feng
    Xiao, Zhilei
    Liu, Hanqiang
    Tang, Zihan
    Fan, Jiulun
    KNOWLEDGE-BASED SYSTEMS, 2023, 271
  • [38] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    Chong, J. K.
    MEMETIC COMPUTING, 2016, 8 (02) : 147 - 165
  • [39] A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution
    J. K. Chong
    Memetic Computing, 2016, 8 : 147 - 165
  • [40] Clustering using multi-objective genetic algorithm and its application to image segmentation
    Mukhopadhyay, Anirban
    Bandyopadhyay, Sanghamitra
    Maulik, Ujjwal
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2678 - +