Mining Circuit Lower Bound Proofs for Meta-Algorithms

被引:0
作者
Ruiwen Chen
Valentine Kabanets
Antonina Kolokolova
Ronen Shaltiel
David Zuckerman
机构
[1] Simon Fraser University,School of Computing Science
[2] Memorial University of Newfoundland,Department of Computer Science
[3] University of Haifa,Department of Computer Science
[4] University of Texas at Austin,Department of Computer Science
来源
computational complexity | 2015年 / 24卷
关键词
Average-case circuit lower bounds; Circuit-SAT algorithms; compression; meta-algorithms; natural property; random restrictions; shrinkage of de Morgan formulas; 03D15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial compression algorithms for “easy” Boolean functions from the corresponding circuit classes. The compression problem is defined as follows: given the truth table of an n-variate Boolean function f computable by some unknown small circuit from a known class of circuits, find in deterministic time poly(2n) a circuit C (no restriction on the type of C) computing f so that the size of C is less than the trivial circuit size 2n/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${2^n/n}$$\end{document}. We get non-trivial compression for functions computable by AC0 circuits, (de Morgan) formulas, and (read-once) branching programs of the size for which the lower bounds for the corresponding circuit class are known.
引用
收藏
页码:333 / 392
页数:59
相关论文
共 22 条
[1]  
Allender E.(2008)Minimizing Disjunctive Normal Form Formulas and AC SIAM Journal on Computing 38 63-84
[2]  
Hellerstein L.(1992) Circuits Given a Truth Table Random Structures and Algorithms 3 289-304
[3]  
McCabe P.(1987)Simple Constructions of Almost Vestnik Moskovskogo Universiteta. Matematika 42 70-73
[4]  
Pitassi T.(2009)−wise Independent Random Variables SIAM Journal on Computing 38 2220-2272
[5]  
Saks M.E.(2010)On a method of obtaining more than quadratic effective lower bounds for the complexity of π-schemes Journal of the Association for Computing Machinery 57 1-2810
[6]  
Alon N.(1979)Polylogarithmic Independence Can Fool DNF Formulas Mathematics of Operations Research 4 233-235
[7]  
Goldreich O.(1984)Polylogarithmic independence fools Mathematical Systems Theory 17 13-27
[8]  
Håstad J.(1974) circuits Journal of Computer and System Sciences 9 256-278
[9]  
Peralta R.(2001)A greedy heuristic for the set covering problem Journal of Computer and System Sciences 63 236-252
[10]  
Andreev A.E.(1982)Parity, Circuits, and the Polynomial-Time Hierarchy Information and Control 55 40-56