Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature

被引:7
作者
Xiang-Dong Li
机构
[1] Institute of Applied Mathematics,
[2] AMSS,undefined
[3] Chinese Academy of Sciences,undefined
来源
Mathematische Annalen | 2012年 / 353卷
关键词
Riemannian Manifold; Heat Equation; Heat Kernel; Ricci Curvature; Compact Riemannian Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study Perelman’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal W}}$$\end{document} -entropy formula for the heat equation associated with the Witten Laplacian on complete Riemannian manifolds via the Bakry–Emery Ricci curvature. Under the assumption that the m-dimensional Bakry–Emery Ricci curvature is bounded from below, we prove an analogue of Perelman’s and Ni’s entropy formula for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}}$$\end{document} -entropy of the heat kernel of the Witten Laplacian on complete Riemannian manifolds with some natural geometric conditions. In particular, we prove a monotonicity theorem and a rigidity theorem for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal W}}$$\end{document} -entropy on complete Riemannian manifolds with non-negative m-dimensional Bakry–Emery Ricci curvature. Moreover, we give a probabilistic interpretation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{W}}$$\end{document} -entropy for the heat equation of the Witten Laplacian on complete Riemannian manifolds, and for the Ricci flow on compact Riemannian manifolds.
引用
收藏
页码:403 / 437
页数:34
相关论文
共 58 条
[1]  
Arnaudon M.(2009)Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds Stoch. Process. Appl. 119 3653-3670
[2]  
Thalmaier A.(1994)L’hypercontractivité et son utilisation en théorie des semigroupes Lect. Notes Math. 1581 1-114
[3]  
Wang F.-Y.(1999)Harnack inequalities on a manifold with positive or negative Ricci curvature Rev. Math. Iberoam. 15 143-179
[4]  
Bakry D.(2006)Erratum to: “A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow Asian J. Math. 10 165-492
[5]  
Bakry D.(1981)On the upper estimate of heat kernel of a complete Riemannian manifold Am. J. Math. 103 1021-1063
[6]  
Qian Z.(1981)A lower bound for the heat kernel Commun. Pure Appl. Math. 34 465-480
[7]  
Cao H.-D.(1991)Gradient estimates on manifolds using coupling J. Funct. Anal. 99 110-124
[8]  
Zhu X.-P.(1976)Théorème de comparaison en géométrie Riemannienne Research Inst. Math. Sci. Kyoto Univ. 12 391-425
[9]  
Cheng S.-Y.(2007)A formula relating entropy monotonicity to Harnack inequalities Commun. Anal. Geom. 15 1025-1061
[10]  
Li P.(2006)A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature J. Funct. Anal. 238 518-529