A criterion of normality based on a single holomorphic function

被引:0
作者
Xiao Jun Liu
Shahar Nevo
机构
[1] University of Shanghai for Science and Technology,Department of Mathematics
[2] Bar-Ilan University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2011年 / 27卷
关键词
Normal family; holomorphic functions; zero points; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a family of functions holomorphic on a domain D ⊂ ℂ Let k ≥ 2 be an integer and let h be a holomorphic function on D, all of whose zeros have multiplicity at most k −1, such that h(z) has no common zeros with any f ∈ F. Assume also that the following two conditions hold for every f ∈ F: (a) f(z) = 0 ⇒ f′(z) = h(z); and (b) f′(z) = h(z) ⇒ |f(k)(z)| ≤ c, where c is a constant. Then F is normal on D.
引用
收藏
页码:141 / 154
页数:13
相关论文
共 21 条
[1]  
Pang X. C.(2000)Normal families and shared values Bull. London Math. Soc. 32 325-331
[2]  
Zalcman L.(2005)On the normality of certain king of holomorphic functions Chin. Ann. Math. Ser. A 26 765-770
[3]  
Zhang G. M.(2004)Normal families of holomorphic functions Illinois Math. J. 48 319-337
[4]  
Sun W.(1879)Géométrie des polynômes J. École Polytech. 46 1-33
[5]  
Pang X. C.(1989)Bloch’s principle and normal criterion Sci. China Ser. A 32 782-791
[6]  
Chang J. M.(1998)Normal families: new perspectives Bull. Amer. Math. Soc. (N.S.) 35 215-230
[7]  
Fang M. L.(2001)Applications of Zalcman’s lemma to Analysis 21 289-325
[8]  
Zalcman L.(2007)-normal families J. Anal. Math. 101 1-23
[9]  
Lucas F.(1975)Quasinormality and meromorphic functions with multiple zeros Amer. Math. Monthly 82 813-817
[10]  
Pang X. C.(1966)A heuristic principle in complex function theory Comment Math. Helvet. 40 117-148