Small Point Sets that Meet All Generators of W(2n+1,q)

被引:0
作者
Klaus Metsch
机构
[1] Mathematisches Institut,
来源
Designs, Codes and Cryptography | 2004年 / 31卷
关键词
polar space; ovoid; blocking set;
D O I
暂无
中图分类号
学科分类号
摘要
Let W(2n+1,q), n≥1, be the symplectic polar space of finite order q and (projective) rank n. We investigate the smallest cardinality of a set of points that meets every generator of W(2n+1,q). For q even, we show that this cardinality is qn+1+q{n−1, and we characterize all sets of this cardinality. For q odd, better bounds are known.
引用
收藏
页码:283 / 288
页数:5
相关论文
共 13 条
  • [1] Blokhuis A.(1995)Some Journal of Algebraic Combinatorics 4 295-316
  • [2] Moorhouse G. E.(2003)-ranks related to orthogonal spaces J. Combin. Designs 11 290-303
  • [3] De Beule J.(2001)The smallest minimal blocking sets of Discr. Math. 238 35-51
  • [4] Storme L.(1998)(6, Bulletin de la Société mathématique de Belgique 5 389-392
  • [5] Eisfeld J.(2003)), J. Geom. 76 216-232
  • [6] Storme L.(1995) even European Journal of Combinatorics 16 87-92
  • [7] Szönyi T.(1981)Covers amd bocking sets of classical generalized quadrangles Geom. Dedicata 10 135-144
  • [8] Sziklai P.(undefined)The sets closest to ovoids in undefined undefined undefined-undefined
  • [9] Metsch K.(undefined)(2 undefined undefined undefined-undefined
  • [10] Metsch K.(undefined) + 1, undefined undefined undefined-undefined