Excitonic Phase Transition in the Extended Three-Dimensional Falicov–Kimball Model

被引:0
|
作者
V. Apinyan
T. K. Kopeć
机构
[1] Polish Academy of Sciences,Institute for Low Temperature and Structure Research
来源
关键词
Excitons; Phase transition; Strongly correlated systems; Coulomb interaction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the excitonic phase transition in a system of the conduction band electrons and valence band holes described by the three-dimensional (3D) extended Falicov–Kimball (EFKM) model with the tunable Coulomb interaction U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} between both species. By lowering the temperature, the electron–hole system may become unstable with respect to the formation of the excitons, i.e, electron–hole pairs at temperature T=TΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T=T_{\Delta }$$\end{document}, exhibiting a gap Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} in the particle excitation spectrum. To this end we implement the functional integral formulation of the EFKM, where the Coulomb interaction term is expressed in terms of U(1) phase variables conjugate to the local particle number, providing a useful representation of strongly correlated system. The effective action formalism allows us to formulate a problem in the phase-only action in the form of the quantum rotor model and to obtain analytical formulas for the critical lines and other quantities of physical interest like charge gap, chemical potential and the correlation length.
引用
收藏
页码:27 / 63
页数:36
相关论文
共 50 条
  • [21] Excitonic Insulator State of the Extended Falicov-Kimball Model in the Cluster Dynamical Impurity Approximation
    Hamada, Kosuke
    Kaneko, Tatsuya
    Miyakoshi, Shohei
    Ohta, Yukinori
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (07)
  • [22] ROLE OF HYBRIDIZATION IN PHASE-TRANSITION IN THE FALICOV-KIMBALL MODEL
    SINGH, I
    AHUJA, AK
    JOSHI, SK
    SOLID STATE COMMUNICATIONS, 1980, 34 (01) : 65 - 67
  • [23] Existence of excitonic insulator phase in the extended Falicov-Kimball model: SO(2)-invariant slave-boson approach
    Zenker, B.
    Ihle, D.
    Bronold, F. X.
    Fehske, H.
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [24] Phase transitions in a spinless, extended Falicov-Kimball model on the triangular lattice
    Yadav, Umesh K.
    Maitra, T.
    Singh, Ishwar
    SOLID STATE COMMUNICATIONS, 2013, 164 : 32 - 37
  • [25] On Quantum Phase Transition. II. The Falicov–Kimball Model
    Alain Messager
    Journal of Statistical Physics, 2002, 106 : 785 - 810
  • [26] Ground states of an extended Falicov-Kimball model
    P. M.R. Brydon
    M. Gulácsi
    A. Bussmann-Holder
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 54 : 73 - 81
  • [27] An extended Falicov-Kimball model on a triangular lattice
    Yadav, Umesh K.
    Maitra, T.
    Singh, Ishwar
    Taraphder, A.
    EPL, 2011, 93 (04)
  • [28] Competing orders in an extended Falicov-Kimball model
    Subhasree Pradhan
    The European Physical Journal B, 2019, 92
  • [29] Instability of the chiral phase and electronic ferroelectricity in the extended Falicov-Kimball model
    Golosov, D. I.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (03): : 557 - 561
  • [30] Electronic polarons in an extended Falicov-Kimball model
    Brydon, PMR
    Gulácsi, M
    Bishop, AR
    EUROPHYSICS LETTERS, 2006, 74 (01): : 131 - 137