Embedding Novikov–Poisson algebras in Novikov–Poisson algebras of vector type

被引:0
作者
A. S. Zakharov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Algebra and Logic | 2013年 / 52卷
关键词
Novikov algebra; Novikov–Poisson algebra; Jordan superalgebra; Kantor double; Poisson bracket; Jordan bracket;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that a Novikov–Poisson algebra whose associative commutative part contains at least one element that is not a zero divisor is embedded in a Novikov–Poisson algebra of vector type. As a consequence, the corresponding Jordan superalgebra is special.
引用
收藏
页码:236 / 249
页数:13
相关论文
共 27 条
[1]  
Gel’fand IM(1979)Hamiltonian operators and algebraic structures related to them Funkts. An. Pril. 13 13-30
[2]  
Dorfman IY(1985)Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras Dokl. Akad. Nauk SSSR 283 1036-1039
[3]  
Balinskii AA(1987)On a class of local translation invariant Lie algebras Dokl. Akad. Nauk SSSR 292 1294-1297
[4]  
Novikov SP(1989)A class of simple nonassociative algebras Mat. Zametki 45 101-105
[5]  
Zelmanov EI(1992)Novikov algebras Nova J. Alg. Geom. 1 1-13
[6]  
Filippov VT(1992)Simple Novikov algebras with an idempotent Comm. Alg. 20 2729-2753
[7]  
Osborn JM(1997)Novikov–Poisson algebras J. Alg. 190 253-279
[8]  
Osborn JM(1996)On simple Novikov algebras and their irreducible modules J. Alg. 185 905-934
[9]  
Xu X(2001)Classification of simple Novikov algebra and their irreducible modules of characteristic 0 J. Alg. 246 673-707
[10]  
Xu X(1992)The Kantor construction of Jordan superalgebras Comm. Alg. 20 109-126