Discrete spectrum in the gaps of a perturbed pseudorelativistic hamiltonian

被引:0
作者
Birman M.S. [1 ]
Pushnitskii A.B. [1 ]
机构
关键词
Discrete Spectrum; Complex Separable Hilbert Space; Tile Operator; SchrSdinger Operator; Tile Computation;
D O I
10.1007/BF02680144
中图分类号
学科分类号
摘要
The pseudorelativistic Hamiltonian G1/2 = ((-i∇-A)2 + I)1/2 + W, x ∈ ℝd, d ≥ 2, is considered under wide conditions on potentials A(x), W(x). It is assumed that a real point λ is regular for G1/2. Let G1/2(α) ≃ G1/2 - αV, where α > 0, V(x) ≥ 0, and V ∈ Ld(ℝd). Denote by N(λ,α) the number of eigenvalues of G1/2(t) that cross the point λ as t increases from 0 to α. A Weyl-type asymptotics is obtained for N(λ,α) as α → ∞. Bibliography: 5 titles. © 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:3437 / 3447
页数:10
相关论文
共 5 条
  • [1] Avron J., Herbst I., Simon B., Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J., 45, 4, pp. 847-883, (1978)
  • [2] Birman M.S., Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant, Adv. Sov. Math., 7, pp. 57-73, (1991)
  • [3] Birman M.S., Raikov G.D., Discrete spectrum in the gaps for perturbations of the magnetic Schrödinger operators, Adv. Sov. Math., 7, pp. 75-84, (1991)
  • [4] Bratteli O., Kishimoto A., Robinson D., Positive and monotonicity properties of C<sub>0</sub>-semigroups, i, Commun. Math. Phys., 75, pp. 67-84, (1980)
  • [5] Rozenblum G., Solomyak M., CLR-estimate for the generators of positivity-preserving and positively dominated semigroups, Algebra Analiz, 9, 6, pp. 214-236, (1997)