Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
来源
Journal of Astrophysics and Astronomy | / 44卷
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
[41]   MHD numerical simulations of colliding winds in massive binary systems - I. Thermal versus non-thermal radio emission [J].
Falceta-Goncalves, D. ;
Abraham, Z. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (02) :1562-1570
[42]   Detection of Gamma-Rays from the Protostellar Jet in the HH 80-81 System [J].
Yan, Da-Hai ;
Zhou, Jia-Neng ;
Zhang, Peng-Fei .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (02)
[43]   Non-thermal emission from pulsar-wind nebulae in starburst galaxies [J].
Ohm, S. ;
Hinton, J. A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 429 (01) :L70-L74
[44]   ON THE NATURE OF THE NON-THERMAL RADIO SOURCE AT THE CENTER OF THE ORION STREAMERS [J].
Trejo, Alfonso ;
Rodriguez, Luis F. .
REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 2010, 46 (02) :349-353
[45]   Non-thermal pair model for the radio-galaxy Centaurus A [J].
Marcowith, A ;
Henri, G ;
Renaud, N .
ASTRONOMY & ASTROPHYSICS, 1998, 331 (03) :L57-L60
[46]   QED can explain the non-thermal emission from SGRs and AXPs: variability [J].
Heyl, Jeremy S. .
ASTROPHYSICS AND SPACE SCIENCE, 2007, 308 (1-4) :101-107
[47]   Propeller spin-down and the non-thermal emission from AE Aquarii [J].
Meintjes, PJ ;
de Jager, OC .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 311 (03) :611-620
[48]   QED can explain the non-thermal emission from SGRs and AXPs: variability [J].
Jeremy S. Heyl .
Astrophysics and Space Science, 2007, 308 :101-107
[49]   Non-thermal emission from secondary pairs in close TeV binary systems [J].
Bosch-Ramon, V. ;
Khangulyan, D. ;
Aharonian, F. A. .
ASTRONOMY & ASTROPHYSICS, 2008, 482 (02) :397-402
[50]   Non-thermal emission from cosmic rays accelerated in H II regions [J].
Padovani, Marco ;
Marcowith, Alexandre ;
Sanchez-Monge, Alvaro ;
Meng, Fanyi ;
Schilke, Peter .
ASTRONOMY & ASTROPHYSICS, 2019, 630