Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
来源
Journal of Astrophysics and Astronomy | / 44卷
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
[31]   The Circumestellar Disk of the B0 Protostar Powering the HH 80-81 Radio Jet [J].
Girart, J. M. ;
Estalella, R. ;
Fernandez-Lopez, M. ;
Curiel, S. ;
Frau, P. ;
Galvan-Madrid, R. ;
Rao, R. ;
Busquet, G. ;
Juarez, C. .
ASTROPHYSICAL JOURNAL, 2017, 847 (01)
[32]   Non-thermal emission processes in massive binaries [J].
Michaël De Becker .
The Astronomy and Astrophysics Review, 2007, 14 :171-216
[33]   IDENTIFICATION OF THE INFRARED NON-THERMAL EMISSION IN BLAZARS [J].
Massaro, F. ;
D'Abrusco, R. ;
Ajello, M. ;
Grindlay, J. E. ;
Smith, Howard A. .
ASTROPHYSICAL JOURNAL LETTERS, 2011, 740 (02)
[34]   Observational connection of non-thermal X-ray emission from pulsars with their timing properties and thermal emission [J].
Chang, Hsiang-Kuang ;
Hsiang, Jr-Yue ;
Chu, Che-Yen ;
Chung, Yun-Hsin ;
Su, Tze-Hsiang ;
Lin, Tzu-Hsuan ;
Huang, Chien-You .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 520 (03) :4068-4079
[35]   NON-THERMAL EMISSION FROM CATACLYSMIC VARIABLES: IMPLICATIONS ON ASTROPARTICLE PHYSICS [J].
Simon, Vojtech .
ACTA POLYTECHNICA, 2013, 53 :595-600
[36]   The non-thermal emission from the colliding-wind binary Apep [J].
del Palacio, S. ;
Benaglia, P. ;
De Becker, M. ;
Bosch-Ramon, V ;
Romero, G. E. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2022, 39
[37]   The origin of the diffuse non-thermal X-ray and radio emission in the Ophiuchus cluster of galaxies [J].
Perez-Torres, M. A. ;
Zandanel, F. ;
Guerrero, M. A. ;
Pal, S. ;
Profumo, S. ;
Prada, F. ;
Panessa, F. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 396 (04) :2237-2248
[38]   Synchrocurvature modelling of the multifrequency non-thermal emission of pulsars [J].
Torres, Diego F. ;
Vigano, Daniele ;
Coti Zelati, Francesco ;
Li, Jian .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (04) :5494-5512
[39]   Non-thermal emission in Cyg OB2 [J].
Fenech, D. ;
Morford, J. ;
Prinja, R. .
FORMATION, EVOLUTION, AND SURVIVAL OF MASSIVE STAR CLUSTERS, 2017, 12 (S316) :139-140
[40]   Diffuse non-thermal emission in the disks of the Magellanic Clouds [J].
Persic, M. ;
Rephaeli, Y. .
ASTRONOMY & ASTROPHYSICS, 2022, 666