Modeling of thermal and non-thermal radio emission from HH80-81 jet

被引:0
作者
Sreelekshmi Mohan
S. Vig
S. Mandal
机构
[1] Indian Institute of Space Science and Technology,
来源
Journal of Astrophysics and Astronomy | / 44卷
关键词
Radiation mechanisms: non-thermal; methods: numerical; stars: formation; stars: jets;
D O I
暂无
中图分类号
学科分类号
摘要
Protostellar jets are one of the primary signposts of star formation. A handful of protostellar objects exhibit radio emission from ionized jets, of which a few display negative spectral indices, indicating the presence of synchrotron emission. In this study, we characterize the radio spectra of HH80-81 jet with the help of a numerical model that we have developed earlier, which takes into account both thermal free–free and non-thermal synchrotron emission mechanisms. For modeling the HH80-81 jet, we consider jet emission towards the central region close to the driving source along with two Herbig-Haro objects, HH80 and HH81. We have obtained the best-fit parameters for each of these sources by fitting the model to radio observational data corresponding to two frequency windows taken across two epochs. Considering an electron number density in the range of 103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^3$$\end{document}–105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-3}$$\end{document}, we obtained the thickness of the jet edges and fraction of relativistic electrons that contribute to non-thermal emission in the range of 0.01∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^{\circ }$$\end{document}–0.1∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1^{\circ }$$\end{document} and 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}–10-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-4}$$\end{document}, respectively. For the best-fit parameter sets, the model spectral indices lie in the range of − 0.15 to +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}0.11 within the observed frequency windows.
引用
收藏
相关论文
共 50 条
  • [21] A search for non-thermal radio emission from jets of massive young stellar objects
    Obonyo, W. O.
    Lumsden, S. L.
    Hoare, M. G.
    Purser, S. J. D.
    Kurtz, S. E.
    Johnston, K. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (03) : 3664 - 3684
  • [22] Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80-81 Radio Jet
    Girart, J. M.
    Fernandez-Lopez, M.
    Li, Z. -Y.
    Yang, H.
    Estalella, R.
    Anglada, G.
    Anez-Lopez, N.
    Busquet, G.
    Carrasco-Gonzalez, C.
    Curiel, S.
    Galvan-Madrid, R.
    Gomez, J. F.
    de Gregorio-Monsalvo, I.
    Jimenez-Serra, I.
    Krasnopolsky, R.
    Marti, J.
    Osorio, M.
    Padovani, M.
    Rao, R.
    Rodriguez, L. F.
    Torrelles, J. M.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 856 (02)
  • [23] Can single O stars produce non-thermal radio emission?
    Van Loo, S.
    Runacres, M. C.
    Blomme, R.
    ASTRONOMY & ASTROPHYSICS, 2006, 452 (03) : 1011 - 1019
  • [24] The non-thermal radio jet toward the NGC 2264 star formation region
    Trejo, Alfonso
    Rodriguez, Luis F.
    ASTRONOMICAL JOURNAL, 2008, 135 (02) : 575 - 579
  • [25] Non-thermal emission from microquasar/ISM interaction
    Bordas, P.
    Bosch-Ramon, V.
    Paredes, J. M.
    Perucho, M.
    ASTRONOMY & ASTROPHYSICS, 2009, 497 (02) : 325 - 334
  • [26] Constraining the nature of DG Tau A's thermal and non-thermal radio emission (vol 481, pg 5532, 2018)
    Purser, S. J. D.
    Ainsworth, R. E.
    Ray, T. P.
    Green, D. A.
    Taylor, A. M.
    Scaife, A. M. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (03) : 4085 - 4085
  • [27] Non-thermal emission from old supernova remnants
    Fang, Jun
    Zhang, Li
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 384 (03) : 1119 - 1128
  • [28] Non-thermal emission in the lobes of Fornax A
    Persic, Massimo
    Rephaeli, Yoel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (02) : 2001 - 2009
  • [29] Non-thermal radio emission from O-type stars V. 9 Sagittarii
    Blomme, R.
    Volpi, D.
    ASTRONOMY & ASTROPHYSICS, 2014, 561
  • [30] congruents (COsmic ray, Neutrino, Gamma-ray, and Radio Non-Thermal Spectra) - I. A predictive model for galactic non-thermal emission
    Roth, Matt A.
    Krumholz, Mark R.
    Crocker, Roland M.
    Thompson, Todd A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (02) : 2608 - 2629