共 50 条
- [1] Skew constacyclic codes over a non-chain ring Fq[u,v]/⟨f(u),g(v),uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}[u,v]/\langle f(u),g(v), uv-vu\rangle $$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2020, 31 (3-4) : 173 - 194
- [2] (θ,δθ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \delta _\theta )$$\end{document}-Cyclic codes over Fq[u,v]/⟨u2-u,v2-v,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q[u,v]/\langle u^2-u, v^2-v, uv-vu \rangle $$\end{document} Designs, Codes and Cryptography, 2022, 90 (11) : 2763 - 2781
- [3] Construction of quantum codes from λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-constacyclic codes over the ring Fp[u,v]⟨v3-v,u3-u,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\mathbb {F}_p[u,v]}{\langle v^3-v , u^3-u , uv-vu\rangle }$$\end{document} Journal of Applied Mathematics and Computing, 2021, 65 (1-2) : 611 - 622
- [4] Self-dual constacyclic codes of length 2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^s$$\end{document} over the ring F2m[u,v]/⟨u2,v2,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$\end{document} Journal of Applied Mathematics and Computing, 2022, 68 (1) : 431 - 459
- [5] Quantum synchronizable codes from the ring Fq+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q} +$$\end{document}v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}$$\end{document}Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} Quantum Information Processing, 23 (2)
- [6] (1 − uv)-constacyclic codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p $\end{document} Journal of Systems Science and Complexity, 2014, 27 (4) : 811 - 816
- [7] The Gray images of (1+u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+u)$$\end{document} constacyclic codes over F2m[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{2^m}[u]/\langle u^{k} \rangle $$\end{document} Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 433 - 445
- [8] Quadratic residue codes over the ring 𝔽p[u]/〈um−u〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[u]/\langle u^{m}-u\rangle $\end{document} and their Gray images Cryptography and Communications, 2018, 10 (2) : 343 - 355
- [9] (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $\end{document} Cryptography and Communications, 2017, 9 (4) : 459 - 473
- [10] A class of constacyclic codes over Z4[u]/⟨uk⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$\end{document} Journal of Applied Mathematics and Computing, 2019, 60 : 237 - 251