Search for U1Lμ−Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$\end{document} charged dark matter with neutrino telescope

被引:0
作者
Kento Asai
Shohei Okawa
Koji Tsumura
机构
[1] University of Tokyo,Department of Physics
[2] University of Victoria,Department of Physics and Astronomy
[3] Kyushu University,Department of Physics
关键词
Beyond Standard Model; Cosmology of Theories beyond the SM; Gauge Symmetry;
D O I
10.1007/JHEP03(2021)047
中图分类号
学科分类号
摘要
We study a simple Dirac fermion dark matter model in U1Lμ−Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$\end{document} theory. The new light gauge boson X plays important roles in both dark matter physics and the explanation for the muon g− 2 anomaly. The observed dark matter relic density is realized by a large U1Lμ−Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$\end{document} charge without introducing a resonance effect of the X boson. As a by-product of the model, characteristic neutrino signatures from sub-GeV dark matter ψ are predicted depending on the mass spectrum. We formulate the analysis of ψψ¯→νν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi \overline{\psi}\to \nu \overline{\nu} $$\end{document}, and of ψψ¯→XX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi \overline{\psi}\to XX $$\end{document} followed by X→νν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ X\to \nu \overline{\nu} $$\end{document} in a model independent way. The energy spectrum of neutrinos in the former process is monochromatic while in the latter process is bowl-shape. We also evaluate sensitivity at Super-Kamiokande and future Hyper-Kamiokande detectors. The analysis is finally applied to the U1Lμ−Lτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$\end{document} dark matter model.
引用
收藏
相关论文
共 122 条
[1]  
Pospelov M(2008)′ Phys. Lett. B 662 53-undefined
[2]  
Ritz A(2017) ( JHEP 04 164-undefined
[3]  
Voloshin MB(2017) 2) JCAP 11 042-undefined
[4]  
Alves A(2018) 2 JCAP 03 037-undefined
[5]  
Arcadi G(2010) ( Chin. Phys. C 34 741-undefined
[6]  
Mambrini Y(1991) 2) Mod. Phys. Lett. A 6 527-undefined
[7]  
Profumo S(1991) 2 Phys. Rev. D 43 22-undefined
[8]  
Queiroz FS(1991) U(1) Phys. Rev. D 44 2118-undefined
[9]  
Escudero M(2014) 2 JHEP 03 105-undefined
[10]  
Witte SJ(2009)undefined JCAP 10 011-undefined