Elastic flow of networks: short-time existence result

被引:0
作者
Anna Dall’Acqua
Chun-Chi Lin
Paola Pozzi
机构
[1] Universität Ulm,Institut für Analysis
[2] National Taiwan Normal University,Department of Mathematics
[3] Universität Duisburg-Essen,Fakultät für Mathematik
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Geometric evolution; Elastic networks; Junctions; Short-time existence; Primary 35K52; Secondary 53C44; 35K61; 35K41;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-gradient flow of the penalized elastic energy on networks of q-curves in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}$$\end{document} for q≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ge 3$$\end{document}. Each curve is fixed at one end-point and at the other is joint to the other curves at a movable q-junction. For this geometric evolution problem with natural boundary condition we show the existence of smooth solutions for a (possibly) short interval of time. Since the geometric problem is not well-posed, due to the freedom in reparametrization of curves, we consider a fourth-order non-degenerate parabolic quasilinear system, called the analytic problem, and show first a short-time existence result for this parabolic system. The proof relies on applying Solonnikov’s theory on linear parabolic systems and Banach fixed point theorem in proper Hölder spaces. Then the original geometric problem is solved by establishing the relation between the analytical solutions and the solutions to the geometrical problem.
引用
收藏
页码:1299 / 1344
页数:45
相关论文
共 23 条
  • [1] Barrett JW(2012)Elastic flow with junctions: variational approximation and applications to nonlinear splines Math. Models Methods Appl. Sci. 22 11-379
  • [2] Garcke H(1993)On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation Arch. Rational Mech. Anal. 124 355-136
  • [3] Nürnberg R(2019)Elastic of networks: long-time existence result Geom. Flows 4 83-669
  • [4] Bronsard L(2014)A Willmore-Helfrich Comm. Anal. Geom. 22 617-2051
  • [5] Reitich F(2019)-flow of curves with natural boundary conditions J. Differential Equations 266 2019-133
  • [6] Dall’Acqua A(2014)Willmore flow of planar networks Proc. R. Soc. A 470 20130611-708
  • [7] Lin C-C(1973)Stiffest elastic networks SIAM Rev. 15 120-84
  • [8] Pozzi P(2020)Variational study of nonlinear spline curves SIAM J. Math. Anal. 52 682-undefined
  • [9] Dall’Acqua A(2017)A second order gradient flow of Computers and Graphics 66 74-undefined
  • [10] Pozzi P(undefined)-elastic planar networks undefined undefined undefined-undefined